" LIMITED WARRANTY

Ohio Scientific, Inc., 1333 S. Chillicothe Road,
Aurora, Ohio 44202 (the ‘““Warrantor’’) hereby
warrants to the original purchaser that its
hardware equipment will be free from defects in’
materials and workmanship for a period of ninety
(90) days from the date of receipt by purchaser,
when operated and maintained in accordance with
Ohio Scientific’s recommendations. This
warranty includes power supplies and floppy disk
. drives. It specifically excludes terminals, video
monitors, audio cassettes and keyboards not
manufactured by Ohio Scientific.

Ohio Scientific warrants its software against
media that is defective, such that it is not
readable by the computer system, for a period of
ninety (90) days from the date of receipt by
purchaser. The software is thoroughly tested and
thought to be reasonably bug-free when released.
Ohio Scientific maintains a full staff of software
experts, and will endeavor to correct any serious
bugs that may be discovered in the software after
release in a reasonable amount of time. However,
this is a statement of intent and not a warranty
or guarantee in such event. (Software sold with
annual site licenses offers additional support
commitments. See their contracts for details.)

You must have purchased the product from a duly
authorized Ohio Scientific dealer, whose name
appears in Ohio Scientific’s current dealer
listings, to qualify for the 90 day warranty. Ohio
Scientific makes no other express warranty than

» that made above. Any implied warranty,
including, but not limited to, the implied
warranty of MERCHANTABILITY or fitness for
a particular purpose, shall not be extended
beyond the ninety (90) day period.

Ohio Scientific’s obligation under the above
warranty is limited to the repair of the product,
without charge, if it is defective and has not been
misused, carelessly handled, or defaced by repairs
made or attempted by others, and it is returned to
Ohio Scientific for repair. Ohio Scientific shall
not be liable for any other loss or damage
resulting directly or indirectly from the defect in
the product including, but not limited to,
incidental. or consequential damages for lost ,
profits, lost sales, injury to person or property, or
any other incidental or consequential loss.

In the event that you desire to obtain
performance of any warranty obligation, please
return the product, in its original or other
adequate packaging, to Ohio Scientific, Inc., or by

prior arrangement to the dealer from whom you
purchased the unit.

Ohio Scientific reserves the ultimate authority to
determine what constitutes in-warranty repair in
circumstances where circuit modification, abuse,
misuse, or shipping damage occurs. If it is
determined that the product is not under
warranty, it will be repaired using Ohio
Scientific’s standard rates for parts and labor.
Ohio Scientific will use its best efforts to repair
the product within three weeks after receipt
thereof. However, Ohio Scientific shall not be .
responsible for delays beyond its control such as,
but not limited to, those caused by shipping or
long delivery of replacement components.

The warranty contained herein is the only
warranty which any Ohio Scientific dealer is
authorized to give in conjunction with the
product. Ohio Scientific shall not be bound by any
other warranty made by the dealer to the
purchaser. The support of such warranty or
maintenance contract is the sole responsibility of
the dealer offering the warranty.

When requesting performance under the termns of
this warranty, the original purchase date, or date
of purchaser’s receipt of the product, must be
established by means of a bill of sale, invoice, or
other acceptable documentation.

This warranty gives you specific legal rights, and
you may also have other rights which vary from
state to state. ’ .

If there are any questions about this warranty, or
if a complaint has not been answered by the
dealer to your satisfaction, please contact:

OHIO SCIENTIFIC

1333 SOUTH CHILLICOTHE ROAD
AURORA,0OH44202 -

‘For your records:
Model Number
Serial Number
Date Purchased

Dealer .

C4P

OPERATORS MANUAL

© Copyright 1981 by Ohio Scientific Inc. ; o
All rights reserved. This book, or any part thereof, may not be reporduced in any form without permlssmn of the publishers. Printed
in the United States of America.

Although great care has been taken in the preparation of this Operator s Manual to insure the technical correctness, no responsibili-

ty is assumed by Ohio Scientific for any consequences resulting from the use of its contents. Nor does Ohio Scientific assume any
responsibility for any infringements of patents or other rights of third parties which may resuit from its use.

TABLE OF CONTENTS

SECTION | - PAGE
1. GENERAL INTRODUCTIONciimiiiiiiiiiiieiieees [1
2. VIDEO DISPLAY CONNECTION........... TR | ,.} 2
3. CONNECTING THE FLOPPY OR CASSETTE SYSTEM. e 3
A. Cassette System e et et et e eeen e eaeaa e e aaa e et 4
B. Floppy Disk Systemcciiiiiiiiiiiiiiisssnnnnsrernnenneeinenss 4
4. STARTING THE MACHINE UUTTTURT T 5
A. Cassetie Systemcoiiiiiiiiiii, e 5
B. FIOPPY DiSk SYStOMeenvereeereenereenneeeninreeninneenennss ... 6
5. RUNNING A CANNED PROGRAM............... e rereeaes feeraaaaas -. .. 9
A. Cassettg Systemcooiiiiiiiiiiiie it .‘ 9
B. Disk Based System.................. 10
6. BASIC PROGRAMMINGcoooiiiiiiiiiiiiiiiiiii s 12
7. GRAPHICS. . ettt anns SR T 27
T30 1 1 o 30
A. Tone Generator....... e SO ... 30
. B. DAC Use (via monitor)................ R e raeeenrarasaa i 31
9. STORING FILES ON CASSETTEORDISKS e eeeeenaa 33
A. To Load Cassette: Programs into RAMooiiiiiiiiiiiee e, 33

B. Saving Programs on Cassette U P
C. Use of Cassettes as a Data Storage Mediumcccovvivrnnennens 35

D. Reading Data From Cassette Tapecc.eeeereserieessiersennees 35
E. To Write to Disk............ i, eeieiaii.. 36
F. TORead from Disk.........ciiiiiiiiiianiiintnsernasrtaescacacssnasnnans 37
G. Operating System Organization...............cocciiiiiiiiiiiiinnnne 38
10. ADVANCED FEATURES.......ciiiiiiitiiiiiitininrtseiantnnantsnsssnnnnennnns 40
11. JOYSTICKS AND KEYPADSciiiiiiirriianttainatsnnnrsnnanesaccnnnnns 42
A, JOYStCKS ... iiiiitiiiiiiiietettsistanentattantnasaraasanntetinanaanns 42
B. Keypads.......ccoiiiiiiiiiineesnserrnssassssesssrsrsasnnsssssssnsssonsne 47

i

-~ ~_.A_A~4o/\‘-’\ N

O N N NS TN NN e N A A A

—— e B

—~

e —— e A AN o

N

SECTION . N ~ PAGE
12. AC REMOTE CONTROL, SECURITY.......cciiiiiiiiiiienienns N ariseseseeaaaes 50
A. Appliance Control ..ottt it i i i e 50

B. Home Security. ... i it e 52

1 I - 5 . I8 T 0 54
A. External Switches0 0 ccviiiiiiieieneneneniisn F 54

B. PIARegISters.oiiiiiiiiiiiiiiiiiiiiniecneeannannencnsanssneannnns 55

14. CONNECTION OF 16 PIN BUS.DE'VICES..- S 59
A. CA-15Board, the Interface Boardciiiiiiiiiiriniinrinnenss 59

B. CA-20 Board, the Expander Board............. e rireanena, fereraeeaas 59

C. CA-21 Board, the Parallel 1/0 Expansion Board P, 60

D. CA-23 Board, the EPROM Programmerco.vvuvnrenenearnns s 60

E. CA-24 Board, the Experimenter Board............. Ceeerereeans veree.... 61

F. CA-25 Board, the Accessory Interface i PP -

G. CA-22 Board, Analog 1/0............covvuvnennnennn. e 61

15. MODEM AND TERMINAL COMMUNICATIONS...... .. Creeeeaeeas ceiiee.... 63
16. PRINTER COMMUNICATIONS 65
17. ADVANCED TOPICS................... B S 67
A, PIOt BaSIC . ..ceuunuteeeetee ettt iieeseaineeeranereeanneens e 67

= T [67

C. Home Control and Real Time Operating Systems............. eeeeireans 68

D. Real Time CIOCK................ et EOT TR SRR 68

a. Time of Day Clock....... TR e, 68

b. Count Down Timer............... e P ... 69

c. Real Time Monitor, RTMONcvvvvnnnn. e reianen 69

d. A Greenhouse Example............... et rreseeeter e 71

APPENDICES IR | PAGE
A. TROUBLESHOOTING AND MACHINE ORGANIZATION. et 75
B. DETAILED A-15 BOARD PIN CONNECTIONS............ e e T7
C. MEMORY MAP AND MINI-FLOPPY DISK ORGANIZATION e ... 78
D. DISK BASIC STATEMENTS AND ERROR LISTINGS........cvvvveeinneeeennnn. 81
E. POKE AND PEEKLIST.........ccovvvnnnnn et e e e 87
F. PIANOKEYBOARDccvvuennn. e PP -
G. DISK UTILITY PROGRAMS.c.cvvennennnnn. e S 93
" a. Delete...... e et ereeans e, 93
D. ROMAMIE. . . .o e e ieetaetaeeaneeneeesessessesensensenesscnnsentonsensnnnns 93

LS 0 - T T [93

o TR0+ 95

e. Creéte ... 97

H. HEX TO DECIMAL TUTOR, CONVERSION TABLES e . 99
. ASCH CONVERSION CHARTocimiiniiiinninnnannes iererneaeenai.. 108
J. CHARACTER GRAPHICS AND VIDEO SCREEN LAYOUT. e ...110
K. 0S-65D USER'S GUIDEccovverennnnnn. e ...118
L. MACHINE MONITOR, 65V.........ccvviviinennennnnn. e i 125
M. USR(X) FUNCTIONuuutiiiteetiinrteeeeeeannnnneeeennnnneeens e 127
A USING the ASSEMDIE.vveetneeeieneereeaneeeerineeeeaaieeeens134
N. EXECUTING A DISK RESIDENT MACHINE LANGUAGE PROGRAM. 136
O. INDIRECT FILES. ..\ vnuuestiuneeenneennneianeeeianeaaeeesinnesaneenaneensns 139
P. BEXEC* ...viiiiiiienaeennieennnnss S e e 142
Q. I/VODISTRIBUTIONonvenaeniineinnannns BT SRR144
e, TR 149

SECTION 1
GENERAL INTRODUCTION

" You are using a state-of-the-art Ohio Scientific computer system which brings cost effective processing to the
popular computing field. The high instruction rate and expandable architecture of the OSI bus bring computing
power within the reach of home and office while a wide range of software supports the various appllcauons such as
recordkeeping, security systems, education, computation, and entertainment. .

This manual is a general guide to your computer’s features. It gives applications and examples to ald you in your
programs and applications. We hope it will lead you to consider new ways to benefit from your computer’s features.
More detailed manuals from OSI cover the definitive use of option boards or operating system and software details.
However, the material in this manual should be sufficient to show most of the features you will need in common ap-
plications. '

To aid in quick reference, the features and functions referred to throughout the manual are contained in separate
appendlces and listed in the index.

The C4is a self—contamed computer and a highly reliable system. To prevent abuse and assure this level of per-
formance, please follow these instructions:

1. Insure that the power outlet is part of a 3-wire grounded 118V AC syslenl If the existing system is a two wire
system, then a securely attached wire from the computer’s cabinet must be run toa clamp -on a cold water
pipe. Only then may a two wire adapter be used on the computer’s power cable.

Failure to follow Ihese precautions may present a shock hazard and-cause coniputer-damage from static discharges.
Such damages are specifically not covered under the Wauamy :

2. Connect the system together with the cables provided accordmg to F|gure 1. Press the cable connectors ﬁrmly
for good contact. If a monitor provided by OSI is not used, then read the section on*‘Video Dlsplay Connec-
llOl’l .

3. Put the floppy disks aside until needed. These disks should be stored uprlght in lhelr sleeves ina clean dry
area. They should not be bent, folded or twisted.

Do not use paper clips or other fasteners on the disks.
Mark the disks wilh felt tip pens, only. Ball point pens and pencils will dent the disks.
Do not touch the inner disk surface, as body oils and dirt will degrade performance.

Keep disks away from magnetic fields (magnets, motors, computer power supplies, etc.) Do not Ieave disks
on the cabinet tops, ‘as the magnetic fields and temperalure can be excessive.

Disk temperature should be maintained between 19°C— 50°C (50°F—125°F). If the temperature is comfort-
able for a person, the disk will not suffer either! Storage in direct sunlight, adjacent to heating vents, or in a
car trunk should be avoided.

The disks must never be left in the disk drives when any part of the system is turned OFF or ON.

SECTION 2
VIDEO DISPLAY CONNECTION

There are three different methods of attaching a video display to the C4P computers. These are outlined as follows:

1 Preferred method—connect the supplred computer video cable to the high impedance (Hi-Z) input of a

closed-circuit TV video monitor. Ohio Scientific offers a color television set, modified for video monitoring.
Ohio Scientific also offers the Model AC-3P 12" black and white monitor. Both are ideal for this application.
The units double as television receivers when the video cable is disconnected.

Connect the supplied computer video cable to an ‘““RF modulator’” which is, in turn, connected to a standard
television’s antenna terminals. RF Modulators are -inexpensive and allow you to use almost any television
with the computer. They are sold in kit form.

"Havé a standard AC transformer- operated televrsron modified to accept direct video entry. This requires spe-
cial safety precautrons

-

CLOSED-CI_RCUIT VIDEO MONITOR CONNECTION

1.

2

Refer to Figure 1. Attach the supplied video cable to the computer as shown.

. Connect the other end of the cable to the high impedance input of the video monitor. The AC-3 monitor has

a Hi-Z RCA-type phono jack input. On other monitors, a high impedance —low impedance selector switch is
sometimes present, or there may be two or more inputs. Consult the manufacturer’s instructions.

. Observe the manufacturer’s power recommendations: If the monitor has a 3- -wire grounded plug, connect it

to a properly grounded 3-wire AC outlet.

Turn on the computer and monitor. A

Allow the monitor to warm-up. The screen should be filled with random graphics characters, alphabet, etc.
If necessary, adjust the VERTICAL and HORIZONTAL controls to obtain a-stable picture.

RF MODULATOR/STANDARD TV CONNECTION

N s L=

Refer to Figure 1. Review the manufacturer’s instructions includ.ed \a\rith the RF modulator.
Connect the computer video cable to the computer as shown.

Connect the video cable to the RF Modulator.

Connect the modulator to the television’s antenna terminals (consult modulator instructions).
Plug in the television and computer.

Turn on the computer, television, and modulator (consult modulator instructions).

At this point, the proper TV channel must be selected and the television’s fine tuning adjusted as necessary
(consult modulator instructions).

When the television warms up a screen filled with random graphics characters should be observed. If the pic-
ture is not stable, adjust the television’s VERTICAL or HORIZONTAL controls as needed.

2

A P At

N e v T T N e -

R W

JOYSTICK “A” .
JOYSTICK “B” VIDEO MONITOR DAC AUDIO

, ~_ PORT“A” PORT “B"-\ , " FINE COLOR ADJUST \ \ / .
. \ . \ i
[f‘ , \ | l,‘
i 16PIN __ [J2(1J3||J4 J5 : !
h Q /0 BUS O ol
! Js | ')
: 0 o N
llz[AC Js J9 57 ‘
\.] SWITCH »- comD l |
il O©0O 7 O [
q FUSE ° ' ' / '
i N AT f.
L / / NOT USED -/ -
: PRINTER KEYPAD “A” ["o\ MIN. | CASSETTE OUTPUT,
MODEM KEYPAD “B’ "FLOPPY CASSETTE MIKE . AC CONTROL

SYSTEMS

Fig. 1 C4P Back Panel and Video |nt,erco'nnectio'n

SECTION 3
CONNECTING THE FLOPPY OR CASSETTE SYSTEM

' CASSETTE SYSTEM

The manual to this point has made no differentiation between a C4P (cassette) comptiter and a C4P MF (Min_i-
Floppy). Hereafter, all informatioh pertinent to the cassette model will be marked with the same border as that on
this page. o .

The cassette provides an economical bulk storage medium, though the data transfer rate is considerably ‘lower
than the disk’s rate. The internal configuration of computer components is slightly different than the mini-floppy
configuration. Externally, the computer and accessories should agree with Figure 2. o

The cassette recorder should be a medium price audio tape recorder. If price is indicative of quality, then $35-$5¢
would be a price guide. Volume and tone controls should be set at mid-range. If 11V AC is not used for the re-
corder power, be sure to use fresh batteries. (Speed variations due to weak batieries can create errors.)

MR . . TELEVISION OR VIDEO MONITOR

CHALLENGER C4P

CASSETTE RECORDER

CASSETTE OUTPUT JACK
(MAY BE LABELED “EARPHONE" OR “SPEAKER")

CASSETTE INPUT JACK

Fig. 2 Computer and Accessories

The cassette based systems are not permitted to use back panel connections J2 and J4 and J8 and J9.

FLOPPY DISK SYSTEM

1. The mini-floppy disk provides a large performance benefit for the relatively small investment above a C4P
. (cassette) system,; the chief benefits of the C4P MFare file handling and. high speed data transfer.

2. Floppy disk drive units will be connected at the factory. The removal of packing material, done earlier;, is the
only preparation step‘required. Externally the interconnection of computers and accessories should -agree
with Fig. 1. ‘) S :

4

SECTION 4
STARTING THE MACHINE

CASSETTE SYSTEMS: COLD START

The precautions and discussion given in the main part of this manual for the C4P MF (mini-floppy) system, still
apply. As a reminder these are outlined.

1.

Assemble the computer system according to Figure 2. The use of OSI supplied cables will assure reliable-and
firm connections between units.

. Turn on the computer. The switch is on the back panel.

. Turn on the monitor. (Only OSI modified monitors or RF modulators should be used. Damage produced by

unauthorized monitors will void all warranty coverage.)

. Turn on the cassette recorder power.

5. Press the “BREAK” key."

19.

. Rewind the cassette so that the tape “‘leader’’ is visible on the take-up spool. OSI software will be supplied on

high quality tapes. Use of low quality tapes will cause erratic performance and excessive recorder wear.

. Respond to the terminal screen message

C/W/M?
by pressing the *‘SHIFT LOCK” key down and then respond
C <RETURN>

If the “SHIFT LOCK?” key is not depressed, the keyboard message will not be understood by the com-
puter. '

. When the computer requests

MEMORY SIZE? - :
just press the “RETURN™ key.

. The computer will next ask

TERMINAL WIDTH?
Again, press the “RETURN”’ key.
The prompt

OK

should appear at the bottom of the screen. If it does not, repeat steps 1 thru 1.

This prompt indicates the BASIC program is ready for operation. The cassette supported C-4P is a BASIC-in-
ROM system, having a 6-digit BASIC stored in read only memory (ROM).

Section 5, Running a Canned Program, will introduce some OSI software and a demonstration program. Cassette
system users skip over the disk oriented material in this section and proceed directly to Section 5.

‘5

FLOPPY DISK SYSTEMS

POWER UP

a.

Check that the system is connected according to Figure 1 and the related instructions. Make sure that there is
clearance for ventilating air in the back of the C4P system.

b. Plug in power cords.
c. Tufn on power on the back of the keyboard console.
d. Turn on floppy disk power (switch is on rear of disk drive).
e. Turn on CRT and any other accessories.
f. Depress the SHIFT LOCK key. Now press the ‘‘BREAK’’ key on the keyboard.
W | ol p RET ~|———— RETURN
CONTROL TRY SL ' BX 1 BREAK
SHIFT | c M (. SHIFT SHIFT LOCK
- SPACE
Fig. 3 Keyboard Layout
g. Remove the disk labeled ‘‘Customer Demo Disk™ from its covering sleeve. Carefully insert the disk with
right thumb on the label. Keep the disk label on the top side. Refer to.Fig. 4.
The disk should be inserted firmly until a click is heard or slight resistance is encountered. Close the door on
the disk drive.
h. MAKE SURE THE **SHIFT LOCK™ KEY IS DEPRESSED. When the computer responds ‘‘H/D/M?”" on

the CRT (ielevision screen), type .
D , - o /
The program will automatically be loaded into the.computer from the disk. ’

This disk will repeat its program endlessly.

Inserting a Disk. ' i A . To remove a Disk.

Fig. 4 Disk Placement

6

NOTATION

“Throughout the remainder of this manual, the following notation conventions shall be employed:
The shorthand notation:

<RETURN>

will be used instead of writing *‘Press the ““RETURN"’ key.” Do not type the brackets or the word RETURN letter-
by-letter.
Blank spaces will be indicated by a blank in the typmg, such as

19 GOTO 5 <RETURN>
rather than writing
10 <SPACE> GOTQO <SPACE> 5 <RETURN>.

When the operator is to enter something from the keyboard, his responses will be underlined or in brackets (the
messages produced by the C4P will not be underlined). In the following example, '

FUNCTION?
UNLOCK <RETURN>

The C4P ask the question “*“FUNCTION?"" and the operator’s repsonse would be to type out “UNLOCK” (note
that all of the letters are capitalized) and then a carriage return.

DISK PROGRAMS

The Customer Demo Disk contains a continuously sequenced animation, showing the power of the OS1 C4P
computer and its software. This manual, will show how to adapt some of these programs to individual purposes.
Similar programs are available from OSI dealers. When finished, remove the disk from the drive and store the disk
in its protective sleeve. To use another disk, press

<BREAK>

insert the new disk in the disk drive, then repeat Step g of the previous section.
The ““Dealer Demo Disk’’ contains the programs

Graphics Demo, an image generator which shows the tools of animation and graphing.

o @®

Plane Banner, a simulated airplane made from the C4P’s Character set. A wide variety of shapes is possible.

Random Square, an animated pattern generator to show the color range available.

e o

Kaleidoscope, a continuously changing pattern to illustrate the variety of symbols available.
Space Wars, a game to pit your starship against the enemy empire.
Hectic, a ricochet simulation game. Both scientific pr{)blem simulation and games can use these techniques.

Tiger Tank, a combat game to show real-time player interaction.

A S

Set Time, a clock function which does more than keep time. This program can be used to control other pro-
grams. ’ ’ T ,

AC Demo, a home light and appliance control program. With the external lamp modules attached, the pic-
tures on the CRT screen will be echoed by the device behavior. (Note that remote module switches must be
properly set to use this program.)

These programs can be readily adapted to individual use. After becoming familiar with the C4P system, the operator
will be able to list these programs and extract the examples for his special purposes These well written examples
provide programming lessons and power for sophisticated programs.

In order to access specific programs on the Customer Demo Disk (ONLY), the operator/user must be provided
with a ‘“‘menu’’ of programs from which to choose. To examine the directory of programs on this disk, press

7

<CONTROL> <SHIFT>

simultaneously. These keys are adjacent to each other on the left of the keyboard. These keys must be held down for
several seconds, as the program checks them infrequently. ‘
Upon being presented with the menu of programs, respond to the request for response by typing

PASS

to immediately bring up the BASIC program.
To run a simple program stored on the disk, enter

RUN “DIR” <RETURN>
The DIR program will ask

LIST ON LINE PRINTER INSTEAD OF DEVICE #2?
Answer
| NO <RETURN>

at which time a listing of the directory appears on the screen. Each program stored on the disk is listed by name and
the numbers of the disk tracks it occupies.

An alternative way to run the program DIR is by specifying the track on which it is resident. On the Dealer Demo
Disk, DIR is resident on track 11. The alternate method to RUN the program DIR is to enter

RUN “11"” <RETURN>

at which time-the sequence displayed when RUN “DIR”’ was typed will repeat.
Once in memory,.the program can be RUN yet again by typing

RUN <RETURN>

since it need.not be loaded from disk again. .

POWER DOWN

When ready to turn the system off:
a. Remove the disk from the disk drive by pushing the rectangular button below the disk door Then remove the
disk, placing it back in its sleeve.

b. Turn off peripherat devices, if any. -

c. Turn off CRT. (Video monitor)

d. Turn off disk drive (for disk systems only).

e. Turn off computer power (back of keyboard console) last.

The hardest part of using the C4P MF computer has just been completed. From hereon, care of the computer and
orderly handling of materials will pay for itself in reliability and enjoyment of the C4P system. Now go on to using

' the system in some applications!

 SECTION5
RUNNING A CANNED PROGRAM

CASSETTE SYSTEMS
In Section 4, the procedure to turn on the C4P Computer was covered. Now the power of the OSI Software availa-

ble to support the computer will be shown by running a demonstration program.
1. Turn on the computer and bring up BASIC, as described in Section 4.

2. Place the demionstration cassette (Marked SCX-104, C-2-4P/C4P Sampler) in the tape recorder which is con-
nected to the system as shown in Fig. 2
3. Turn on the recorder power.
4. Type
LOAD
but DO NOT press <RETURN> yet. : -

S. Press the PLAY switch of the recorder. When the tape begins to move past the leader, as indicated by brown
tape moving off the left hand spool and winding onto the right, then press the computer’s .-

<RETURN>

key. After a few symbols appear on the screen, then a listing of the program will appear on the screen. The
first program on the cassette will take approximately 3 minutes to load. Programs requmng 4K of memory
will load in approximately 3 minutes, those requiring 8K of memory will require 5 minutes.

6. When the program is loaded, the message
?S:] ERROR
OK

will appear on the screen. Now, stop the tape or the next program on the tape will be loaded into memory over the
program which was loaded first.
7. Press

<SPACE>
then
<RETURN>
8. The program Iisting may be examined by typing
LIST <RETURN>

9. To execute the program, type

RUN <RETURN>

at which time, the program will prompt the operator through the first program on the tape, a Math Tutorial. Other
. sample programs on the tape may be examined by repeating steps 4 to 9, after going through the startup procedure
of Section 4. The Cold Start is necessary to return to the BASIC program control.

10. Rewind the cassette and return it to safe storage before powermg down the tape recorder and computer.

9

Each program on cassette is separated by approximately 10 seconds of blank tape. If the tape is not rewound after
loading a program, it will be positioned to load the next program.
The programs recorded on the demonstration cassette are:

Side I: ““Basic Math’” is an educational quiz program that gives addition, subtraction, multiplication, and division
problems. '

“‘Checking Account’’ will help balance the checkbook. Just give the computer the initial balance and check
amounts and let the computer do the work.

““Trig Tutor’* explains and diagrams three trig functions: sine, cosine, tangent. The computer then tests
comprehension of these functions with a quiz.

‘‘Star Wars’’ is an arcade-type computer game. The player moves the cross-hairs around the screen trying
to draw a bead on the target ship. '

Side II: “*Counter’” is a combination of educational game and cartoon for youngsters learning to count froni one to
ten. ' : . :

“President’s Quiz’* asks 20 historical questions about various presidents.

By using the tape counter on the recorder, the tape can be positioned to return to any program. When the cassette
is turned to Side I to load the program *‘Counter,’” a 2-3@ second delay occurs before listing begins on the screen.

These programs provide usefulness in application and serve as models of well written software. A listing of availa-
ble OSI Software, continually expanded and updated, is available from OSI dealers.

DISK BASED SYSTEMS

"Several disk based programs have already been reviewed in previous sections. The disk labeled OS-65D, de-
scribed following the procedure of Section 4B, *‘Starting The Machine,” presents a menu display on the screen.
When the standard 0S-65D development disk is loaded, the following text is displayed on the screen:

BASIC EXECUTIVE FOR ’

0S-65D V3. N

MO, DAY, YR RELEASE

FUNCTIONS AVAILABLE:

COLORS-TEST PATTERN TO ADJUST COLOR MONITORS

CHANGE-ALTER WORK-SPACE LIMITS

DIR-PRINTS DIRECTORY
~ UNLOCK-UNLOCKS SYSTEM FOR END USER MODIFICATIONS

FUNCTION?

This menu offers four program choices. COLORS, the first choice, presents a test pattern to adjust the color video
monitor controls, if needed. If the second choice, CHANGE, is selected, the computer will automatically LOAD
and RUN a program by the name of CHANGE. If the response DIR is entered, the computer will LOAD and RUN
a program named DIR. If the response is UNLOCK, then the system is unlocked. This allows the user to assume
control of the system with the capability of entering and listing new programs in the workspace. The response
UNLOCK places the system in the BASIC immediate mode and displays the prompt OK.

For now, focus on the program DIR. This program prints a directory of the files present on the diskette. If the re-
sponse to the query FUNCTION? is DIR, the computer will ask '

LIST ON LINEPRINTER INSTEAD OF -DEVICE #27

10

Responding NO will cause the following output to appear on the screen:

0S-65D VERSION 3N

—DIRECTORY —
FILE NAME TRACK RANGE
0S-65D3 -12
BEXEC* . . 14-14
CHANGE 15-16
CREATE | 17-19
DELETE 2p-29
DIR 21-21
DIRSRT 22-22
RANLST 123-24
RENAME . 25-25
SECDIR . 26-26
SEQLST 27-28
TRACE - 29-29
ZERO 3p-31
ASAMPL 32-32
COLORS 33-33
C-ASM1 37-37
C-ASM2 38-38
COMPAR 39-39

46 ENTRIES FREE OUT OF 64
OK

Some of the files of this directory listing will be discussed in detail in Appendix G. The files listed contain utility
programs written in BASIC. Note that two of these programs, CHANGE and DIR, were introduced on the previous
page in the menu. In addition to listing the names of the programs on the diskette, the directory tells where they are

“located on the diskette. For example, the program DIR is located on track 21 and is one track long while CHANGE
is a 2 track program starting on track 15. (Each diskette has 4@ tracks, numbered @ through 39.)

Any of the BASIC programs on this disk can be run by responding UNLOCK to the query FUNCTION? and then”
“entering the command RUN “NAME”” where NAME is the name of the program or the number of the first track
. where it is stored. For example, either of the commands RUN*‘DIR”’ or RUN*‘21"" would run the program DIR.

Most of the applications diskettes do not offer the user the option of unlocking the system. On these diskettes
programs are run by entering the appropriate response when the menu is displayed. '

The use of mini-floppy diskettes for storing programs will be discussed in detail in section nine.

11

SECTION 6
BASIC PROGRAMMING

The applications programs provided on the customer demo disk have been used to demonstrate the power of the

OSI C4P system. The next step is to wrrte personal programs in a powerful but simple language. BASIC is such a
language.

An excellent book by Dwyer and Crltchﬁeld BASIC and the Personal Computer, is available from OSI dealers.
However, the information in this manual will suffice to teach some simple programs. This section is not intended to
cover all of BASIC. Instead, it is to show extensions and differences of OSI’s BASIC that the user should know. A
few simple examples are included to familiarize the new users with applications.

For Cassette Based systems:

1. Turn on the computer power and the video display console.
2. When the display has warmed up, press
<BREAK>
3. In response to the query
- C/W/M? -
refer to steps 7-10 on page S for procedure
BASIC, as indicated by the prompt
OK
" is now ready to operate.

"For Disk Based systenis:
First, turn on the OSI C4P computer. Remember

—

. Turn on the computer power first and the floppy disk’s power second (power switches are located on the rear
panel; see Figure 1).

Turn on the video display console.

Press <BREAK>. .

Ih_sert the minifloppy disk marked simply ‘‘0S-65D 3.N”°.
Verify that. the shift lock key is down. Press D on the keyboard.

B

Respond to the question
FUNCTION? '

by typing
UNLOCK <RETURN>

(As established under ‘‘2.Notation,’” Section 4, B, the operator’s entrres will be underlined for emphasis.)

Now clean out the work space (memory where the program is runnmg) by respondmg to the BASIC prompter
OK

12

by typing
NEW <RETURN>

This will erase the old programs which occupied the available memory. ‘Next type
LIST <RETURN> '

to verify that no programs are present.

CALCULATOR MODE (IMMEDIATE MODE)

As an example of one of the easiest forms of BASIC math operations, type the line below
PRINT 5+3 <RETURN> ‘ | |
(Remember underlined quantities are entered by the operator.) The ‘computer will retdrn the answer
8 ‘ '
For brevity, the question mark, *‘?”’ can also be used in place of PRINT as V

? 6+ 3 <RETURN>

The result is the same. This calculator-like function is called the immediate mode of operation. It can be used like a
scientific calculator.

e

PROGRAM MODE

Now repeat this program with the input and the output controlled by the computer (program mode) Type
10 ? 5+3 <RETURN>
or
19 PRINT 543 <RETURN> e

Because of starting the line with a number, the computer will await any further numbered lines before performing
the required calculations. This is the first program or set of instructions (in BASIC)! When ready to have the calcu-
lations run, type v

RUN <RETURN>

The C4P will now execute the one line program that was just entered The answer is, as before

8
The numbering of lines (also called ‘‘labeling”’ for “‘statements’>) may be used to perform many instructions con-
secutively. It is a good practice to number statements as 19, 20, 30, . , leaving room for easy future addition of

lines. Be careful to arrange the lines in the order in which they are to be performed The clarity and the usef ulness of
the previous program will be improved by allowing input to the computer when the program is run.

To prompt the program user, quotation marks are placed around words to be printed on the videomonitor when
the statement is performed. The name of the variable to be entered follows the promptmg quote, separated by a
semi-colon.

Intermediate variables, W|th convement names (which do not mclude words reserved for use by BASIC such as
FOR and WAIT-see the appendix) should be chosen to keep the program statements simple. The final statement,
END, in line 5@ in this example, indicates to the computer that this is the end of the program.

Write out this example program. Type :

1@ INPUT “ENTER THE FIRST NUMBER'';A <RETURN>

20 INPUT “ENTER THE SECOND NUMBER";B <RETURN>

13

-390 SUM=A+B <RETURN>

40 PRINT "THE SUM IS";SUM <RETURN>

50 END <RETURN>
In case of a typing mistake, simply pressing
<RETURN>

and retyping the line will force the error to be thrown out. If a long line has been typed, this is inconvenient.
Pressing the keys, SHIFT and O simultaneously, as

<SHIFT O>

will cause the last character typed to be removed. In disk based BASIC, the last character will simply disappear. In
Cassette BASIC-IN-ROM, the -<SHIFT O> will cause an underline symbol to be printed, rather than erase the
deleted character. The statement .

10 PRX ___INT,“HELP"
would appear as |
10 PRINT“HELP”
The cor_rection ;oU!d be checked by doiné 'a

‘command, showing the symbol X has been truly deleted. Cassette BASIC-IN-ROM error message codes differ from

those given for disk based BASIC. Lists of error codes for both versions of BASIC are given in Appendlx D.
When ready to run the program that has just been entered, type

RUN <RETURN>

the message in between quotes in line 19 will appear as

' ENTER THE FIRST NUMBER?

The BASIC program follows the message by a ? to indicate an operator entry is expected. Respond by typing a num-
ber, then a <RETURN>, such as

5 <RETURN>

The computer will inquire again
ENTER THE SECOND NUMBER?
Type Fhe secor}d number in the same manner, such as
o 3 <RETURN>
The computer will respond by printing
THE SUM IS 8
Now type
RUN <RETURN>

The computer will again RUN the program and ask for numbers.

The above examples illustrate that the BAS/C language is algebraic in form, with simple input and output state-
ments. By numbering the statements, the order of execution of program statements is arranged. Upon typing

RUN <RETURN>

14

AT

the ordered sequence of statements is executed. Note that the words appearing between the quotation marks will be

printed on the CRT screen as prompting statements.
Multiple calculations can be performed by using loop statements. For example, computation of the squares of the

numbers from 1 to 6 inclusive could be done by the following program
19 REM SQUARES OF NUMBERS PROGRAM
20 FORI=1TO®6
30 sQ=I"l
49 PRINT “THE SQUARE OF";I;“IS=";8Q
5@ NEXT |
60 END
RUN

Remarks are denoted by the word REM. Remarks are used for program clarity and are not executed by the BASIC
program. The writing of <RETURN> at the end of each line has been discontinued to make the program look less
cluttered. The operator must still enter <KRETURN> when entering the program from the keyboard.

To illustrate another method of performing the same operation, type

30 SQ=IA2

(The up-arrow is entered by <SHIFT N>). This will replace the old Statement (3 SQ=I*I) and will also run but will
yield slight variations in the answers. This is due to the algorithm (method of calculation) which OSI BASIC uses.
The up-arrow, A, means ‘“To the power of.” It involves the use of algorithms instead of merely multiplying.

To do a computation until a desired value is found involves the use of the less than, greater than, or equal (<, >,
=) signs. An example might be to find the smallest integer whose square exceeds 600. -

19 REM FIND THE INTEGER X SUCH THAT
29 REM (X—1) A 2 IS <6p@ AND

39 REM (XA2) 1S> 600

40 X=1

50 SQ=X*X

60 IF SQ> 609 THEN GOTO 99

70 X=X+1 '

80 GOTO 50

99 PRINT “THE LOWEST INTEGER X WITH XA 2> 600 IS";X
109 END

Statement 6@ is a conditional statement. If it is satisfied, i.e., SQ> 600 is true, then the next statement to be executed
is number 99. If SQ> 600 is false, the next statement in order, number 70, is executed. This branching between
statements permits a program to be modified, depending on the result of a calculation. This branching technique
makes high speed decisions possible, based on the data which is evaluated by the computer. When the conditional
branch to statement 99 is made, the answer is then printed. v

CHARACTER MANIPULATION

In addition to handling numbers, OSI BASIC language can-also be used to manipulate characters. For.example, to
read in a string of characters, type

19 INPUT “YOUR CHARACTERS ARE";A$

The dollar sign after the variable name implies that this is a character string, rather than a number, per se.

15

[

!

Several character string operations are possible. It is possible to print out the characters by .typing .
20 PRINT A$ |
To run the program at this point, type RUN, then respond td
YOUR _C.HARACTER-S ARE? - ‘
by typing
NOW <RETURN>
and see the result in the print out
NOW
If
NOW IS THE TIME <RETURN>
had been typed the character string
NOW IS THE TIME

would have been printed. This last string consists of 12 letters and the three blanks in between words These strmgs
can be operated upon with string operations. .
One of the possible string operations is counting the string length

30 L=LEN(A%)

Therefore, the program
1@ INPUT “WHAT ARE YOUR CHARACTERS”;A$
20 PRINT AS$; “ WERE READ IN ”
30 L=LEN(A%)
40 PRINT “THERE WERE" ;L; “CHARACTERS”
50 END

will read in the character string, echo the characters for verification, and print the character count. (BASIC expects
72 or less characters to be input at any time.) Entering ‘“‘LONG” will echo “LONG"’ and report four. characters.

Other useful string operations are picking out the leftmost I characters in a string. For example, the leftmost
character in the string A$ is found via

10 L$=LEFT$(AS$,1)

‘The two lefthand characters in the string A$ are

1(0 L$ LEFT$(A$ 2)
Slmllarly, the rightmost two characters in the strmg A$ are.
10 R$= RIGHT$(A$ 2)

- Likewise, the midrange J characters which start from the Ith one are

M$=MIDS(AS,I,J)
Thus, the second, third and fourth characters of the string A$ are given by
M$=MID$(A$,2,3)

* For example, the program

10 A$="FRIDAY"
29 PRINT MID$(A$,2,3)

16

will resuit in the output
RID | o
) Now enough mformatron has been presented to writ€ a srmple two person hangman type game Let the ﬁrst per-

son type a three letter-word. The computer will then erase the screén. The second person will try to guess the letters.
If the player fails to guess . in six tries, the first player wins.

1Q) REM GUESSING GAME _
2@ INPUT “PLAYER #1 ENTER A 3 LETTER WORD” A$
30 FOR l—1 TO 32 :REM CLEAR

49 PRINT {REM THE
50 NEXT | :REM SCHEEN

60 COUNT=p :REM COUNT IS CORRECT GUESS COUNTER | '
70 TURN=0 :REM TURN COUNTS TOTAL GUESSES

80 INPUT “YOUR ONE LETTER GUESS 1S”;B$
99 IF. LEFT$(A$ 1)—B$ THEN PRINT LEFT$(AS1) -
100 IF LEFT$(AS, 1)—B$ THEN, COUNT= COUNT+1
120 IF RIGHT$(AS,1) =BS$ THEN PRINT RIGHT$(A$ 1) | o
139 IF RIGHT$(A$1)—B$ THEN COUNT= COUNT+1 o
150 IF MID$(AS, 2, 1)—B$ THEN PRINT MlD$(A$ 21))
160 IF MID$(A$,2,1) =BS$ THEN COUNT=COUNT+1
170 TURN= TURN+1
180 IF COUNT=3 THEN GOTO 300
190 IF TURN=6 THEN GOTO 6pd
209 GOTO 80
_ 3090 PRINT “YOU WIN, THE WORD WAS":A$
319 GOTO 709
600 PRINT “YOU LOST, THE WORD WAS";A$
700 END

Of course, if a player gets one letter correct, it is possrble to cheat by re- entermg that letter three tlmes but then,
this was just to try out the ideas: A program does what it is told to do, not necessarily what is desired for it to do.
~ For complicated programs, a picture is usually drawn of the thought or decision process. This picture is called a
flow chart. For the previous program, the flow chart in Fig: SA & B applies:

17

PLAYER #2
GUESS
ONE LETTER

WAS IT
LEFT MOST
LETTER?

NO YES

I

" ECHO
CORRECT
GUESS

i

INCREMENT
CORRECT GUESS
COUNTER

.. T

NO WASIT . YES
RIGHT MOST

. LETTER?

B
ECHO =

CORRECT
GUESS

r

- “INCREMENT -
CORRECT GUESS
COUNTER

o - —]

Fig. 5A Flow Chart (80 to 150)

18

WASIT -
MIDDLE -
LETTER?

NO

‘YES

ECHO
CORRECT

GUESS

INCREMENT
CORRECT GUESS
COUNTER

]‘

INCREMENT
TURN
COUNTER

GUESSED
ALL 3
LETTERS?

'USED UP
TRIES TO
 GUESS?

PRINT
LOSER
MESSAGE_

300

PRINT
WINNER
MESSAGE
AND ANSWER

700
END,

Fig. 5B Flow Chart (1_50 to 700)

19

ThlS picture was then directly written as a BASIC program, since the programming decisions had been made.
-Statement numbers in circles, known as ‘‘connection points’ are used to indicate program start stop, and
branchmg connectlons Input operatlons are represented by a SldeVIeW drawing of a key board

Printing on the video monitor is shown by a:

and calculations are shown by a: -

Branching statements are shown by

where the two possnble branching choices are indicated. These symbols are standard. However, a distinct set of

- shapes’ (from any available’ template) will encourage the use of flow charts The path of calculations, from one

operatlon to the next, 1s shown by arrows.

' Slmphﬁcatlon of this program is-made possible by usmg the MlD$ string operanon as
‘99 FORCHAR=1TO3
100 IF MID$ (A$ CHAR 1)=B$ THEN PRINT B$
119 IF MIDS$ (A$CHAR 1)=B$ THEN COUNT COUNT+1
12(0 NEXT CHAR
130) REM THE MID$ OPERATION CAN
140. BEM REPLACE THE LEFT$
150 REM—AND nléHTs OPERATIONS
16(0 REM WITH RESULTING SlMPLICITY

]

- The ﬂow chart drawmg for this new program segment (statements 90 to 169) can be shown as a loop in Flg 6.

20

DO LOOP FOR
TERMS=1TO 3

GUESS
LETTER CORRECT
FOR THIS
TERM?

NO YES

y

ECHO
CORRECT
GUESS

4

INCREMENT
CORRECT GUESS
COUNTER

-—

120

Fig. 6 Flow Chart (99 to 179)

a

Each term is considered in the same way, so the loop examines the ﬁrst second and thrrd letters of the answer in
order.

If it were desired to rewrite this game program for different-length words, this last form would be easier to follow.
In programming, sacrifice anything but clarity.

Now rewrite the program for words up to five letters in length. Output a blank for each letter as a prompt As the
player guesses a correct letter, fill in the blanks and show them (including repeated letters in the word). Most impor-
tantly, eliminate the chance to cheat by barring reuse of correctly guessed letters, whlle allowmg the opportunity to
repeat incorrectly guessed letters.

The former error was a logic error, discovered by playing (testing?) the game. The program writer could have
written the program to generously. forgive repeated wrong entries, but thrs would have made the example longer
(and easier for the player)!

The subscnpted variables, such as C$(1), C$(2), C$(3),, will be used to hold the value of the first, second,
third, . , correctly guessed letter(s). This will permit clearer prmted messages to the player. By usmg the same
varrable name, each subscripted variable can be used by merely changing the subscript. '

21

With this more complicated program, a flow chart is needed. Start with an overall flow chart (Fig7), the individ-

ual boxes of which get expanded as follows: (Fig.8A, B, C)

PLAYER #1
INPUT WORD

!

CLEAR
SCREEN

!

SET UP

PARAMETERS

!

CLEAR OUT
ANSWER
HOLDER

ONE LETTER GUESS, B$

{F NO
PREVIOUS OK

GUESS?

FOR EACH
LETTER
OF WORD

IS INPUT
CORRECT?

COUNT=0, CORRECT ANSWER COUNT

INITIAL TIME =12 END OF ALLOWED GUESSES
TURN=0, GUESS COUNTER

L=LEN {AS), COUNT OF CHARACTERS INPUT

N

INCREMENT
CORRECT GUESS
COUNTER

1

PUT LETTER IN
ANSWER
HOLDER

TOO MANY
TURNS?

PRINT PRESENT
STATUS

INCREMENT
NUMBER OF GUESSES
COUNTER
TURNS=TURNS+ 1

GOT ALL
THE LETTERS?

LOSER
MESSAGE

Fig. 7 Flow Chart (Overall)

22

" The “‘clear out answer holder’’ is expanded as:

Cslh="~"

and ‘‘print present status’’ becomes

&

Fig. 8B . D§="—"

FOR
1=1TOL

D$=D3$+Cs(l)

()

PRINT
0%

The ‘“‘previous correct guess’’ test is:

PREVIOUS
CORRECT
GUESS?

Fig. 8C

IF
83=Cs(l)
UPDATE

23

5

Now convert these flow charts into a program. If a flow chart is well written; the program can be coded as fast as the
programmer can type. . .

19 REM PROGRAM:HANG AUTHOR: L. ROEMER JULY 1979
20 INPUT “PLAYER #1"7;A$ -
39 COUNT=@:TIMES=10:TURNS=@:L=LEN(A$) .
49 FORI=1TOL "
50 C$(l)="—"
60 NEXT |
70 FOR I=1 TO 32:PRINT:NEXT |
109 INPUT “YOUR GUESS";B$
110 FOR I=1 TO L:IF B$=CS$() THEN GOTO 109
120 NEXT I
130 FORI=1TOL _
140 IF MID$(A$,I,1)=‘B$ THEN COUNT=COUNT+1:C$(l)=B$%
150 NEXT | '
160 TURNS=TURNS+1
179 IF COUNT=L THEN GOSUB 1000
" Jé(?) IF TURNS=TIMES THEN GOSUB 2000 ' » | \
200 D$="" - ' '
219 FOR 1=1TO L
22pD$=D$+C$(l)
230 NEXT I:PRINT D$
249 GOTO 109
1000 PRINT“CHEERS”
1100 END
2009 PRINT“BUMMER”
2100 END
Note: In Microsoft BASIC, the conditional statement at 140 also imposed the condition on the statement following

the colon *:”. The colon serves as a separator between BASIC statements which are written on the same line. An
equivalent program segment would have been. :

149 IF MID$(A$,),1)=B% THEN COUNT=COUNT+1
145 IF MID$(AS$,1,1)=B$ THEN C$(l)=B$

The program’still could be improved. For example, the variable C$(I) has been used to store the correct guesses.
In order to use more than a ten letter word, additional memory must be reserved for the variable C$(I). This must
be done by dimensioning the variable C$(I), for example; for a maximum length of 20 letters in a word as

5 DIM C$(20)

If a subscripted variable is not dimensioned, BASIC will default to the assumption of 10 subscripts possible. For-
tunately, the other variables do not have to be dimensioned, as they are either single characters or, in the case of

AS$, a single string of characters.
A character string is a set of characters stored under a single variable name.

24

To play this game, the computer to user dialog would be, typically,

PLAYER #1? GHOST

Then after the screen is cleared,
YOUR GUESS: G
G____
YOUR GUESS? B
G____

This dialog continues until either the winner message of
CHEERS

or losing message of
BUMMER

is printed. ‘ o
Further improvements in the program could be made by providing a preselected vocabulary or having a stick
- figure drawn as player errors occur. The program works; the style will be up to the individual. '

ASCIl CODE

In using string operations, the distinction must be made between a character and its representation inside the
computer. For example, to display the number 1, a value of 49 decimal (31 hexadecimal) is sent to the display ter-
minal. This code, called ASCIH (4 merican Standard Code for /nformation / nterchange), is used for small com-
puter systems. To find the ASCII representation of a character, such as the letter A, use the BASIC command ASC
as follows: :

19 AS="A"
20 X=ASC(AS%)
30 REM THE ASCH REPRESENTATION
40 REM OF THE FIRST CHARACTER IN A$
50 PRINT “THE ASCIl CODE FOR”;A$;“IS";X
60 END

This process may be inverted to find whether 65 is really the code for the letter A by using the command CHR$
10 X=65 | |
20 A$=CHRS$(X) -
30 PRINT “65 CONVERTS TO";A$
49 END

One application of the ASCII code conversion is in using POKE’s. For example, if the command

LIST

is used to clear prior programs from user memory, the letter ““L’* will be found in location 741 decimal. To examine
this, type

PRINT (PEEK(741))

4 which will return

76

25

76 is the ASCII code for the letter L (See apperidix I for: ASCH code list.) Any other symbol in location 741 will dis-
able the command LIST. It would have been easier to have typed

PRINT (CHR$(PEEK(741))

Conversion to the expected symbol L would have been done directly. -
Another example is found when changing the cursor symbol. The cursor symbol is found in Location 9680
decimal. The command ‘

POKE 9680,42

will make the symboi * into the cursor symbol. However '
POKE 9680 ASC(**")

could have been used to achieve the same result, avoiding looking up the ASCII code. This would be an easier state-
ment to program and a clearer statement to read.

Finally, consider some interesting arithmetic. Since the alphabetic characters are ASCII coded sequentially, from
65 decimal for A to 9@ for Z, the statement

PRINT(ASC(“Z"")—ASC(“A”))

will answer
25

the difference in code of the 26th and 1st characters of the alphabet. Alphabetical sorting can be readily done using
this observation.

For example, read in two letters, arbitrarily placing the first one in string variable FIRS, the second entry in SECS.
Now to test the variables’ order of precedence, rearrange the variables into their natural order by the program:

19 REM PROGRAM SORT
29 INPUT “FIRST LETTER";FIR$
30 INPUT “SECOND LETTER";SEC$
49 REM EACH LETTER IS INPUT
50 IF FIR$> SEC$ THEN TEMP$=FIR$:FIR$=SEC$:SEC$=TEMP$
60 REM ALL STATEMENTS ON LINE 59 HAVE CONDITION APPLIED
70 REM REVERSE ORDER ONLY IF NEEDED
80 PRINT “LETTERS ARE";FIR$,SEC$
RUN S ‘ 4
The variables Will be réarranged ir-1‘to their normal ordering. A.typical dialog is
_FIRST LETTER? M
SECOND LETTER? C
LETTERS AREC M

This sorting takes advantage of the coding without explicitly using the string commands.

26

SECTION 7
GRAPHICS

High quality graphics have been provided on the C4P system by dedicating memory to retain the image of the TV
screen. The entire screen is normally divided into 64 columns by 32 rows. Other screen arrangements are possibleé,
however. These choices are selected by a BASIC command

POKE 56832,N
where N is selected as

Characters Sound . Color/ . -

N Per Line On/Off Black & White
0 32 ' Off B&Ww

1 64 Off ‘ B&Ww

2 32 On Ba&w

3 64 On B&W

4 32 Off Color

5 64 ‘ Off o Color

6 32 On : Color
7 64 On _ | Color -

To select a B & W screen (64 characters by 32 lines) with the sound off, the command would be
POKE 56832, 1 ' | o /

The same command for color display (64 characters by 32 lines) but keeping the sound off is
POKE 56832,5 '

Each character to be displayed is an 8 by 8 array of dots (cell).

There are 256 selectable characters available for use. The 256 characters, selected from a larger possible set, pro-
vide versatile graphics without heavy demands for memory. See appendix J for a complete list. -

The memory selected for storing the screen image is from 53248 to 55295 decimal. The color selected for each
symbol is stored in another set of memory locations from 57344 to 59391. The locations for storing color values are
4096 locations beyond the location for the corresponding symbol. (Since 16 colors are available, only 4 bit (half
byte) storage is provided). Memory might be regarded as an image of the screen (See Fig. 9).

A work sheet is provided in the appendix to make an easier task of screen picture layout.

Display of any image is achieved by placing (in BASIC, using the *“‘POKE’’ command) the character value and its
color in the desired locations. For example, the following BASIC program will turn on the color in the 64 character
display mode, leave the sound off, clear the screen, fill the color memory with Red using POKE’s, place an “X’ina
blue square and sit in a delay loop for a few seconds

19 POKE 568325

20 FOR 1 = 1TO 32: PRINT : NEXT

30 FOR J = 57344 TO 59391 : POKE J,2 : NEXT
40 POKE 54302,188 : POKE 58348,8

50 FORTO = 1 TO 5000 : NEXT

< 27

IMAGE OF COLORS OF
LOCATION 57344 SCREEN CHARACTERS LOGATION 57407

(EQPD HEX) + (EG3F HEX)
LOCATION 53248 5 |
(DOPO HEX) — | _ || LOCATION 53311
| (DP3F HEX)
_ | LOCATION 59391 .
LOCATION 56232 _ 2 (E7FF HEX)
(D7CP HEX) L= , ~__LOCATION 55295
IMAGE OF SCREEN - . (D7FF HEX) .,
CHARACTERS .
" 64 COLUMNS
< :?:: T
1ps RN =
32 ROWS { o

EACH CHARACTER IS A
SET OF 8 DOTS BY 8 DOTS

Fig. 9 Make-up of Video Screen

Color selections must be made from this list:

Decimal Value ' Color

o

Yellow
Inverted Yellow
Red

Inverted Red
Green

Inverted Green
Olive Green

Inverted Olive Green

0 N O 0 AW N =

Blue

Inverted Blue

=
e ©

Purple

[y
-

Inverted Purple
Sky Blue
Inverted Sky Blue

-— -
w N

28

14 Black
15 : "~ Inverted Black (no color)

An inverted color is a black background with the symbol in color. Each of the 32 by 64 cells can be colored. To im- . ‘
prove viewing, only the center two-thirds of the screen is used for graphics. For any line, the left and right border’s
color is the same as the last cell on the line (rightmost). The right-border wraps its color around to the left border.
The cell immediately before the leftmost (addressable) cell has the same color as the leftmost cell.

To illustrate the color choices, the following is a program that places the symbol numbers 181, 182, 180 (the
shape of a ship in that order) into adjacenl locations.

181 182 , . 180 26

This s})ip will be displayed across four columns for 16 ti'mes.' Each time the color shall be changed. The program is

10 POKE 56832,5 : REM SET UP.COLOR ON, SOUND OFF
20 ST=53248 : REM START AT UPPER LEFT
30 C=ST+4096 : REM COLOR AT 4096 BEYOND SCREEN LOCATION

40 FOR RW=9 :
TO 32 ' : REM ROW INCREMENT LOOP

50 FOR CM=0 TO 63 STEP 4 : REM COLUMN INCREMENT LOOP
60 D=64+CM : REM COMPUTE SCREEN DISPLACEMENT
70 POKE ST+D+0,181 : REM SHIP USES 4 CELLS
80 POKE ST+D+1,182 .
99 POKE ST+D+2,180 '
100 POKE ST+D+396
110 FOR I=1TO 3
120 POKE C+D+1,INT(CM/4) : REM SAME COLOR FOR WHOLE SHIP
139 NEXT |
149 NEXT CM
150 NEXT RW
169 GOTO 29

Since the program is looped on itself, <CONTROL C> must be used to exit.
Examing the possible character fonts in the appendix shows a wide variety of useful images for program sources.

29

SECTION 8
SOUND

A standard feature of the C-4P system is the ability to generate tones and sound waveforms for music generation
or for signaling (e.g. alarms, bells). Two methods are provided for sound generation. The simplest method is the
Tone Generator, a device which puts out a continuous stream of square pulses at a programmably selectable fre-
quency. The more versatile method, though more detailed in the requirements in its use, is the companding digital
to analog converter. The Companding DAC is capable of generation of arbitrary waveforms over the common
voltage ranges used by audio amplifiers.

Look at the specific characteristics of the two methods.

TONE GENERATOR EFFECTS

For games or test signals, it is often desirable to have a tone generated at a specific frequency. This frequency can
be heard when the audio output (See Figure 1) of the C-4P is connected to the audio input jack of the AC 3P video
monitor (or other audio amplifier).

. This facility is available when the sound is turned on by

POKE 56832,7
for color and sound or
POKE 56832,3

for black and white and sound.
The other sound options are listed in the ‘‘Video Graphics’’ section.
The tone generator’s frequency is set by

Frequency out = 49152/I '
where | is an integer between 1 and 255. The value of | is stored in 57089 by
POKE 57089,

The registers at 56832 and 57089 are write only locations, and cannot be PEEKed..
A familiarization test program which demonstrates the range of tones produced is

10 TUNES = 57089

20 CST=49152 :REM CONSTANT FOR FREQUENCY CALCULATION
3p FOR I=1TO 255

49 POKE TUNES,|

50 F=INT(CST/l) :REM F IS FREQUENCY IN HERTZ (CPS)

60 PRINT I;F

70 NEXT |

80 POKE TUNES,I :REM BE SURE TO TURN TONE OFF!
99 END :

To try this computer feature in a more interesting tune, the first seven notes of ‘‘Twinkle, Twinkle Little Star”’
have been found to be frequencies of 261.6, 261.6, 392.0, 392.9, 440.9, 440.9, 392.9 Hertz (cycles per second). The

30

frequency of the different notes appears in many‘encyclopedias and handbooks as well as Appendix F. These data
form a BASIC program as shown:

5 REM TWINKLE TWINKLE TUNE
19 TUNE=57089
20 FORT=1TO 7
'30 READ N,BEATS
49 1=INT(49152/N)
50 POKE TUNE,|
60 FOR DELAY=1 TO 5p0*BEATS
70 NEXT DELAY '
8¢ FOR D=1 TO 5p:POKE TUNE,I:NEXT D
99 NEXT T |
100 DATA 261.6,1,261.6,1
110 DATA 392.0,1,392.0,1
120 DATA 440.0,1,440.0,1
130 DATA 39202

The tone generator continues to put out a tone without requiring the computer to do additional calculations. This
achieves efficient use of the computer for signaling at audio rates. A keyboard and note guide is provided in the
appendix to help write tunes.

Twinkle Tune

\
/
4
AR o—o%
N

A 4

DIGITAL TO-ANALOG (D/A) CONVERTER

For general applications, the C-4P is equipped with a companding digital to analog converter (DAC). This DACis
coupled to the output through a capacitor. Therefore, only changing voltages can be observed. A constant voltage
will be blocked by the capacitor. For example, a positively increasing signal from the DAC will appear at the output
as a positive voltage. A decreasing signal from the DAC will appear as a negative voltage. The peak to peak voltage
range is about 3 volts. (Brief maximum excursions of up to £3 volts are possible at start up.) .

Since the output of the DAC must change rapidly to pass through the capacitor coupling to the output, the pro-
gram code which drives the DAC must be in machine code, rather than in BASIC.

A program to drive the DAC can be loaded under the machine monitor at boot up by responding to

H/D/M?

with
M <RETURN>

Press the “‘period” (**.”) to enter the address mode and type
0309

as an address, then press the ‘““‘slash” (‘‘ / **) to alter the memory locations. Enter the two digit hex code at the
adresses indicated : : . .

31

Address . :
@309 E8 <RETURN> Increment X

P300 8E <RETURN> :
0302 @1<RETURN> Store X at location SDF@1
9303 DF <RETURN>
P304 4C <RETURN>
0305 PP <RETURN> To return to start
9306 @3 <RETURN> -
Then ‘type ‘. again to return to the address mode. Type
2300G

to run the program starting at location 309 hexadecimal.
This program will produce a ‘‘saw-tooth’ (roughly triangular) waveform at the DAC output. Music generation of
pleasing quality, imitative of musical instruments can be played by this device (with additional programming).
Be cautioned that the DAC output should not be tied together with any other output of the computer (such as the
tone generator). Further, only one audio output should be used at a time since the register assignment of. the audio
output devices is the same.

The sound output shopld be taken from the DAC (See Figure 1) output jack, of course.

32

SECTION 9
STORING FILES ON CASSETTES OR DISKS

The need to be able to store long programs for rapid reentry is rapidly ev1dent to the new computer user. The
chance for typing errors, compounded with the waste of time, encourages one to find an inexpensive medium which
maintains program fidelity. Both Cassette and Disk offer such a medium. Cassette provides the most economical
medium, since low cost tape recorders suffice for reproducing the signals stored on tape. Low speeds (several min-
utes for typical programs) and the lack of program selection under computer control are the drawbacks which bal-
ance the low cost. The disk provides the speed and computer controlled program selection, but at a somewhat higher
cost than a tape recorder.

Following are examinations of the methods of LOADIng a program into memory-for execution, and the storage of
a user written program on the storage medium. First, a look at the cassette as a storage medium.

TO LOAD CASSETTE: PROGRAMS INTO RAM (MEMORY)

Enter BASIC as shown m the previous section.

1.
2.
3.

Place the demonstranon cassette in the recorder.
Rewind the cassette tape. When the tape stops rewinding return the selection switch(s) to STOP.
Type
NEW <RETURN>
This will clear memory in preparation for reading the cassette.
Type
LOAD
but not <RETURN>

Start the cassette in the PLAY mode, in order to play back the demonstration programs into the computer
memory.

. Assoon as the tape leader has moved past the recorder head (is no longer visible on the wound up reel), press
the
<RETURN>
. The computer will type
?S JERROR
OK

Which may be ignored. The computer will then list the program being read. The program appears on the ter-
minal screen and is simultaneously stored in memory. If there is a large unused tape region between the tape
leader and the program, meaningless characters wili be printed. They may be ignored, as they will not affect
the program operation. '

. Whén the program is finished listing, there will be printed

OK
?S JERROR
OK

9. Turn off the cassette recorder, then type |
<SPACE>
then _
<RETURN>
The program is now in memory and may be examined by typing
LIST <RETURN>

10. When finished, store the cassette away from heat or magnets. Do not leave the cassettes on the computer
case, as the temperature and proximity to the iron transformers can degrade the programs stored on tape.

SAVING PROGRAMS ON CASSETTE

First clear memory by typing

NEW <RETURN>

The computer responds
OK

Now write a short program
10 PRINT*NOW IS THE TIME”
20 PRINT“FOR ALL GOOD MEN"
30 END

1o be stored on tape.

1. Rewind the tape.
2. Type
SAVE <RETURN>
The computer responds
OK
3. Now type
LIST

but not <RETURN>!

4. Start the recorder in the record mode. This opération is obtained by pressing the RECORD and PLAY
switches, simultaneously. (This two switch operation is meant to reduce inadvertent writing over programs
not meant to be destroyed). :

5. As soon as the leader passes the recording heads (disappears from sight on the windup reel), type
<RETURN> _ _
6. When the listing is complete, turn off the tape recorder and type

LOAD <RETURN>

<SPACE>
<RETURN>
7. Now rewind the tape and check that the recording is satisfactory by following the instructions to LOAD the
cassette.) /
!
34 /

o —

USE OF CASSETTES AS A DATA STORAGE MEDIUM

Intermediate data within programs can be stored on cassette. This provides easy retrieval of data and intermediate

calculations for future use.
As an example, this is how to print the numbers 1 to 15 on the cassette. After rewmdmg the tape, the sequence of

operations would be

1. Write the program to create the desired data, such as
1P FORI=1TO 15
29 PRINT |
30 NEXT |
40 END

2. Type
SAVE <RETURN>

3. Type
NULL 8 <RETURN>
This step, although optional, is recommended.
4. Type
RUN
but not <RETURN>

5. Start the recorder in the record mode (PLAY and RECORD switches depressed). As soon as the tape leader
has passed the recording head, press

<RETURN>

6. The data will be recorded on tape and listed on the terminal screen.

7. When the listing of data is complete, turn off the tape record‘e'r and type
LOAD <RETURN>
<SPACE>
<RETURN>

to return to normal operation.

. Note that this set of procedure steps was almost the same set used to SAVE a program.
This data can be input for another program in a similar manner.

READING DATA FROM CASSETTE TAPE

In a manner similar to LOADing programs from cassette, data can be read from cassette. The steps are

1. Rewind the cassette tape.
2. Type
NEW <RETURN>

35

3. Enter the program which will use the data on tape. A typical program might be
10 INPUT A
20 PRINT “DATA IS=";A
39 IF A <15 THEN GOTO 19
49 END
Now type
but not <RETURN>

4. Start the tape in the PLAY mode to play back the data When the tape leader is beyond the recorder’s head,
then press /

<RETURN>

5. The requests for data will be shown on the terminal screen as typically

21

DATA IS=1

22

DATA IS=2
etc.

6. Upon completion of the program (or the tape’s being wound up on the reel), turn off the tape recorder. Then
type

<SPACE>
and
<RETURN>
The computer will now be in the BASIC program.

These techniques should permit a flexible use of the cassette, both as a program and data storage medium. For ex-
tensive data handling, however, the drive control of a disk will give enhanced speed and control. Therefore, its use
is encouraged. .

The alternative to Cassette storage is use of disk. For comparison, examine the equivalent operations on a disk.

Even cassette users should examine the power of a disk operating system. The large convenience of such a system
may justify the modest additional cost.

TO WRITE TO DISK

The operating system (0S-65D V3.N) contains simple and powerful routines to handle disk input and output.
These routines permit using low cost disk storage rather than using the more expensive random access memory
(RAM). :

A simple connection for storing BASIC programs is available.
First, create a file, say “SCRTCH"” (see Appendix G, Section E); then a sumple program such as

) 10 PRINT “NEW TEST”
20 END
can be stored on the file “SCRTCH” by. typing
DISK!“PUT SCRTCH” <RETURN>

36

Now type
NEW <RETURN>
~ LIST <RETURN> .

and see that nothing is printed, since the work space was cleaned by the NEW command
If LIST yields a Syntax error, type POKE 741,76 <RETURN> to enable LIST.

TO READ FROM DISK
To load the program from disk into the BASIC work space, type

DISK!“LOAD SCRTCH” <RETURN>

Then the LIST command
LIST <RETURN>

‘will result in the listing of the prevnously stored program.
Another method to store and retrieve the program on SCRTCH is available. BASIC can be exited by typmg

EXIT <RETURN>
Then respond to the DOS prompt:
A* |
by typing
PUT SCRTCH <RETURN>

to store the program directly under control of DOS.
The copying of file “SCRTCH” into the work space is accomplished by typing

LOAD SCRTCH <RETURN>

To be able to specify the disk locations and memory locations, a more detailed set of commands are CA'LL and
SAVE.
" Thesecommands are used after the operating system prompt(and generally apply only to machine code programs)

A*

CALL address = track, sector <RETURN>

and o : ‘

SAVE track, sector = address/page <RETURN>

These commands transfer a specified track (1 to 39), and sector (1 to the maximum used on that track). A page is
256 bytes. Each sector is an integer multiple of pages, i.e., 1, 2, 3 pages of 256 bytes each. The address must always
be a four digit hexadecimal value, track must be two decimal digits (so track 2 is written §2), and sector is one
decimal digit. Pages must be one hexadecimal digit within the range 1 to 8. A given sector can be referenced only if
all lower numbered sectors exist on the specified track.

The CALL and SAVE commands are particularly suited to storing and retrlevmg machine code programs. An ex-
ample of this is shown in the use of disk copy routines given in the appendix. The CALL and SAVE also permit stor-
ing data on a track without the requirement of creating a named file.

Since all these routines can be invoked within a BASIC program, the ability is provided to run complete BASIC
programs which use other BASIC and machine code programs, brought in as needed from disk. This allows the use
of large programs, small parts of which are brought into memory as needed.

However, the frequent use of the routines, CALL and SAVE, under BASIC, is probable. The DISK! command
can be used to gain access to the operating system commands while remaining in the BASIC program. For example,

37

fo SAVE a program on track 39 for 1 sector, where the program is resident at memory location 3279 hexadecimal,
and it is less than one page (256 characters) long, the command is

_ DISK!“SAVE 39,1 = 3279/1" <RETURN>

Likewise, to recall this same program back into these same memory locations, write
DISK!"“CALL 327 = 39,1" <RETURN>

Caution is urged, as it is possible to bring the disk program on top of a program in use. This will destroy the program
which is overlaid. Each command that gives additional power or discretion carries the need for additional caution.

Tt

OPERATING SYSTEM ORGANIZATION

An operating system is a program, or set of programs, which supervises the running of mdnvndual programs.
That’s not a purist definition, but it will do.

The central part of the OSI disk operating system (DOS on Figure 10) supervises the running of all programs. It
can call for three subsidiary (or utility) programs: BASIC, ASSEMBLER language (ASM) and the EXTENDED
MONITOR (EM).

BASIC is the program commonly in use. It is almost conversational in form. Since it is a high level language, it is
very powerful and rapid for program writing. '

ASSEMBLER is a shorthand way to write machine language programs. The details are covered in the Ohio Scien-
tific 6500 Assembler/Editor User’s Manual and MOS Technology’s Microcomputers.

EXTENDED MONITOR provides the ability to inspect, alter, or fill memory locations. It can also move blocks of
program from one memory region to another. Details are discussed in the Ohio Scientific Extended Machine Lan-
guage Monitor User’s Manual.

The inter-relation of these programs is shown in Figure 1. The recommended way to go from one program to
another is shown beside the direction arrows. These are the commands to be typed.

BASIC

EXIT BASIC

IBASIC DISK! “ASM”

DOS IBASIC

EM ' - IASM
EXTENDED |- 'AS
MONITOR " ASM
FOR DEBUG -
‘ IEM

Fig. 10 Cperating System Flow Chart

" At boot up time, the operatmg system will dellver the BASIC program as a defaullt. To illustrate, when in BASIC
as shown by the prompt

OK

38

type
DISKI“EM”
and see the EXTENDED MONITOR prompt

Upon typing
CEXIT

EM will be left and the computer will be back in DOS as indicated by the * prompter. Return to BASIC can be
effected by typing
BA

(Note: valid only if BASIC is still in memory) which is a return to the starting point.
Since different services are provided by BASIC, EM, and ASM, it is nice to be able to use these programs inter-
changeably.

H

39

SECTION 10
ADVANCED FEATURES

KEYBOARD

The keyboard provides a useful input device for games and home control. The easiest way to use the keyboard is

to use the BASIC command INPUT, as
INPUT A

However, the INPUT command causes a ‘“?’” prompt to be printed. Also, scrolling (movement) of the video scréen
display occurs. These effects could detract from game and display use. A method to avoid these problems is avail-

able.

The keyboard consists of rows and columns of conductors. When a key is depressed, contact between the row
conductor and the column conductor is made. To determine whether or not a key is depressed, certain values can be
entered into the keyboard address by a POKE command and the results observed by a PEEK command. The values .

which need to be POKEd and PEEKed are shown in Fig. 11:

VALUES FOUND WHEN PEEKED

DECIMAL VALUE 128 2 16 8 4 2
c7 c6 cs C4 c3 c2 C1 co
CVALE J 2| s | afs] 6|7
(128 R7 .
JDDPPDL
64 R6
' L o LF | CR
32 Rs
W E R T - Y u |
16 R4
TVS%:%EKSE s D F G H J K
8 R3 '
X c | v B N M
4 R2
Q A Z |spacg| P
2 R1 .
REPT] CTRL | ESC ‘SHlI-FT SHF:FT Eglgr
1 RD

Fig. 11 Keyboard (Values to be POKEd and PEEKed)

be
190 R2=4:C5=32
20 POKE 57088,R2

The keyboard appears at address 57088. To test for depression of the key V", for example, the sequence would

30 VT=PEEK(57088) :REM VT IS TEST FOR V'S COLUMN

49 IF VT=C5 THEN A$="V"

40

to set A$ equal to the V™ key, if it were depressed.

The possibility of depressing several keys simultaneously requires the disabling of the <CONTROL C> feature to
avoid problems in identifying which keys are used. This is done by a POKE 273,96 to disable the <CONTROL C>
feature, prior to polling (examining) the keyboard.

The polled keyboard achieves its economy by reading the SW|tch closures within a program. The keyboard appears
to be memory, focated at 57088, as seen by a program.

The keyboard is a standard 53-key layout, with a few minor exceptions. These exceptions are:

1. The “here is” key on standard layouts is deleted. It has been replaced by a “‘rub out™ key in this position.

2. The standard “‘rub out’’ key position is filled by a ‘‘shift lock’” key. This key is locked in the depressed posi-
tion in normal use.)

3. The *‘left shift’” and “‘right shift’ keys dre separatel)} decoded to permit greater versatility.

4. The “*break’’ key is brought directly to the computer reset circuits. Use of this key restarts the system opera-
tion. '

Lower case letters and fonts can be obtained when the SHIFT Key is unlocked (not depressed). Normally, in
BASIC, the SHIFT LOCK is locked. However, text editing and letter writing will require access to these features.

The foregoing has been a demonstration of a simple method to read the key closures without disturbing the video
display. This method can be extended to the keypad and joystick accessories, which are merely extensions of the
keyboard.

By using similar programs, interactive games and their displays are easily controlled. The complexity of the most
involved game does not require any more than the example just examined.

Some special purpose keys should be mentioned. '

1. SL— the SHIFT LOCK key forces upper case letters to be printed on the CRT. It should be -
depressed prior to bringing up the system or running BASIC. Unlike a typewriter, however,
the numbers will be printed normally. To type the symbols above the numbers, press the
<SHIFT> key simultaneously with the desired character. The SHIFT LOCK key is used for
normal entry. It should be released only for use of lower case letters, and then reset.

2. BREAK— resets the computer any time after the system is powered up.

3. SPACE BAR — provides a space when pressed. . '

3. RETURN— must be pressed after a line is typed. The previously typed line is then entered into computer
memory.

5. CONTROL C—press <CONTROL> while simultanously pressmg C. Program Listing or executing is inter-
rupted, and the message.

BREAK IN LINE XXX
is printed and XXX =a line number in the program.

6. SHIFT O— press <SHIFT> first while siniultaneously pressing O. The last character typed is erased. By
the way, O is the letter ‘‘oh’"; @ will represent the number “‘zero.”” Do not type the slash. It is
just to make reading easier. :

7. SHIFT P— press <SHIFT> first while simultaneously pressing P. The current line being typed will be
erased. The symbol ‘@’ will be displayed. The effect will be to erase the line typed and enter
a <RETURN> and <LINE FEED>.

8. D— When pressed after <BREAK>, causes initialization of the computer and boots the operating
system from disk.

9. M— When pressed after <BREAK> , causes initialization of the computer. The computer is then
in its machine language monitor. -

M

SECTION 1 1
JOYSTICKS AND KEYPADS

JOYSTICKS

The joysticks provide realistic and convenient input devices for games and control. They are connected to the sys-
tem as shown in Figure 12. The joysticks provide a digital signal when they are connected and enabled.
Prior to using the joysticks (or keypads) the <CONTROL C> command must be dlsabled by

POKE 273,96
The enabling of joystick A is done by

POKE 57088,128 : REM — ENABLE JOYSTICK A-
and joystick B 1senabled by |

POKE 57088 16 : REM — ENABLE JOYSTICK B

Only one joystick can be enabled at a time.

The joystick position can be read using the PEEK command. The value found using the PEEK command must be =

ANDed with a constant, depending on which joystick is used, to obtain a value for the specific joystick position. The
constants used are 31 for joystick A and 248 joystick B. For example

APOSIT=PEEK(57®88) AND 31

will return a value for APOSIT (A’s posmon) which indicates the joystick position. If the “ ACTION”' KEY is not
depressed‘ the’ value returned for JOySthk A wnll be as mdlcated in Fig. 13

._\"

ACTION KEY

POSITION | IS THE CENTER
(NEUTRAL) POSITION

Fig. 12 Joystick

42

Joystick A . : :) Joystick B

Action Key Action Key Action Key Action Key
Not Depressed Depressed Not Depressed Depressed
Decimal Decimal Decimal Decimal
Joystick Value Value _ Value Value
Position Réturned : Returned ’ Returned Returned
A 16 & 17 20 32 169
B W /2 A 28 48 176
C 4 Z S ZLl v 16 144
D - 12 9 13 ;_4,’ 80 208
E 8 / 9 7 ‘ 64 192
F 9 3 11,9 72 200
G 2 2 3 /;/ 8 136
H 18 6 19 3°2 , 49 168
I) 116) , 128

Fig. 13 Joystick Values

With the action key depressed, 1 has been added to the “‘action key depressed’’ value for joystick A.
When joystick B is enabled, the corresponding values are returned to

BPOSIT=PEEK(57988) AND 248

The “‘action key depressed’ causes 128 to be added to the “action kéy depressed’ value for joystick B.

238 236 239 : 237

Fig. 14 Airplane Display

To try a sample program, cause the airplane figures in Fig. 14 to move about the screen. Place the plane in the
screen center to start at location 53404 (D420 hexadecimal). Ignore clearing the screen, simply leaving it in B& W
with 64 characters per line and the sound off, by typing

19 POKE 56832,1

Put the original plane on tﬁe mid-screen by
20 POKE 54304,236

Since B & W is being hsed, no color is given. Use the ‘““ACTION” button to quit (exit) the program. Use the logic
shown in Fig. 15. : , g

43

"

/

_ DISABLE CONTROL C INITIALIZE DISPLACEMENT

FROM SCREEN CENTER AND
(ENDAXB i% J%ziTQ;CK) LOCATE PLANE AT VIDEO
SCREEN CENTER (54304)

READ
JOYSTICK A

|

| |

| S —
|

DELAY LOOP TO
SLOW DOWN
MOTION

1S

ACTION KEY

DEPRESSED
?

IS
POSITION AT
I, NEUTRAL

1S
POSITION
AT A?

TO “B"
CASE

ERASE
OLD IMAGE

INCREMENT
DISPLACEMENT DY=DY+1
COUNTER)

THIS IS SAME LOGIC TO BE
USED ON EACH JOYSTICK
POSITION TEST. AT EACH
POSITION, CHANGE
CORRESPONDING DX, DY
AND TEST IF OFF SCREEN.
IF NOT, DRAW IMAGE IN
NEW POSITION.

COMPUTE P=P+AP
NEW POSITION

WRITE
NEW IMAGE
AT NEW
POSITION

i
| .
Fig. 15 Flow Chart for Airplane and Joystick.
44

The program to implement this flowgraph is
10 POKE 2p73,96 :REM DISABLE <CONTROL C>
20 AP=—64:BP=—62:CP=+1:DP=66 :REM SCREEN POSITION DISPLACEMENTS
30 EP=64:FP=62:GP=—1:HP=—66:IP¥Q) :REM RESULTING FROM JOYSTICK POSITION

35 REM P

49 A=16:B=209:C=4:D=12 'REM CODE VALUES FOR

50 E=8:F=10:G=2:H=18!1=0 " .REM JOYSTICK POSITION

55 REM :

69 POKE 57088,128 :REM ENABLE JOYSTICK A

70 BLANK=96 o ‘REM SCREEN SYMBOL FOR BLANK
89 DX=@:DY=0 |

99 P=543p4 :REM MIDSCREEN START

109 POKE P,236
119 R=PEEK(57088) AND 31

120 FOR K=1 TO 209:NEXT K :REM DELAY LOOP
130 IF(R/2—INT(R/2)) > @ THEN GOTO 9099 :REM QUIT IF ACTION KEY
135 REM :REM DEPRESSED (ODD VALUE R)

149 IF R=IP THEN GOTO 110

150 IF R=A THEN GOTO 179

160 GOTO 3P |

170 POKE P, BLANK | | :REM — ERASE OLD IMAGE
189 DY=DY+1 S |

190 IF ABS(DY) > 16 THEN GOTO 9999 :REM IF OFF SCREEN, QUIT
200 P=P+AP

219 POKE P,236 , {REM “A" POSITION IS UPWARD PLANE
220 GOTO 119 o |

390 IF R=B THEN GOTO 320 ~ .REM“B” CASE

319 GOTO 499

320 POKE P,BLANK

339 DY=DY+1:DX=DX+1

340 IF ABS(DX) > 39 OR ABS(DY) > 16 THEN GOTO 9900

350 P=P+BP

360 POKE P,237

370 GOTO 110 |

499 IF R=C THEN GOTO 4290 \REM “C” CASE

419 GOTO 509 '

420 POKE P,BLANK

430 DX=DX+1

45

449 IF ABS(DX) > 39THEN GOTO 99090
45p P=P+CP '
460 POKE P,237

470 GOTO 119

509 IF R=D THEN GOTO 52¢

510 GOTO 609

529 POKE P,BLANK

530 DX=DX+1:DY=DY—1

:REM “D” CASE

549 IF ABS(DX) > 30 OR ABS(DY) > 16 THEN GOTO 9909

550 P=P+DP
569 POKE P,238

570 GOTO 119

600 IF R=E THEN GOTO 620
610 GOTO 70D

620 POKE P,BLANK

- 630 DY=DY-1

640 IF ABS(DY) > 16 THEN GOTO 9909
650 P=P+EP

660 POKE P,238

670 GOTO 119

700 IF R=F THEN GOTO 7290

7190 GOTO 899

720 POKE P,BLANK

730 DX=DX—1:DY=DY—1

740 IF ABS(DX) > 39 OR ABS(DY) > 16 THEN GOTO 9009

750 P=P+FP
760 POKE P,239

770 GOTO 119

800 IF R=G THEN GOTO 82¢
819 GOTO 9P

820 POKE P,BLANK

830 DX=DX—1

840 IF ABS(DX) > 39 THEN GOTO 9090
850 P=P+GP |

860 POKE P,239

870 GOTO 119

99P IF R=H THEN GOTO 929
919 GOTO 119

46

:REM “E” CASE

:REM “F” CASE

/

- :REM “G” CASE

:REM “H" CASE.

920 POKE P,BLANK

93p DX=DX—1: DY=DY+1

940 IF ABS(DX) > 3@ OR ABS(DY) > 16 THEN GOTO 9000
950 P=P+HP

960 POKE P,239

979 GOTO 119

9PP® END

Though the example appears to be long, it is the repeated use of the same tests and operations, in blocks of less
than 10 instructions. A nucleus of programs has thus been created with which to implement other games!

KEYPADS

The keypads are merely extensions of the keyboard as are the joysticks. They can be read in the same manner as
the keyboard is read by the computer.

Prior to reading the keypad, disable <CONTROL C> , with a POKE 2073,96.

Referring to Fig. 16, examine how keypad A is connected. Keypad A consists of a set of wires which correspond to
keyboard rows.shown labeled as R1 to R4. These-are shown superimposed on the keyboard rows R to R7. In the
same manner, the keypad A contains wires corresponding to keyboard columns C5 to C7 out of the total keyboard
set of columns C@ to C7. When a key is pressed, a connection is made between the row and column where the switch
is located.

VALUES FOUND WHEN PEEKED

128 B4 32 16 8 4 2 1
c7 Cc6 C5 C4 €3 €2 C1 Cp

-

(128 R7
64 R6
32 R5
1 2 3
16 R4 4 4
VALUES
TOPOKE | 4 5 6
8 R3
7 8 9
4 R2 4
0 #
2 Ri 4 4
\ 1 R

Fig. 16 Keypad A

A cross-over point for keypad A will be drawn as mdrcated (Row 2 and Column 6 joined when the key for symbol
“8" is pressed), ‘ .

47

. C6

R2

with the key symbol next to the shaded region.
Likewise, keypad B is connected as shown in Fig. 17.

VALUES FOUND WHEN PEEKED

128 s4 3 16 8 @ 4 2 T
c7’ c8 €5 Ca €3 €2 C1 Cp

(128 R7

32 R5—

16 R4~
VALUES
TO POKE

Fig. 17 Keypad B

Since keypad A is connected across R4, R3, R2 and R1, ignbre the other rows by examining these lines only. The
values of R4, R3, R2, and R1 are 16, 8, 4, and 2, respectively.

It is possible to detect the symbol 8 (located at the intersection of Row 2 and Column 6 on keypad A) by setting
Row 2 via '

19 POKE 57¢88.4

where 4 is the value POKEd to activate Row 2. It is then possible to sense Column 6 (value associated with column
6 is 64 by

29 TEST = PEEK(57088)
30 IF TEST = 64 THEN GOTO 1909

where statement 1909 takes care of the case when the 8 value is found.
A short program to read the key *‘8” or the key “‘#’° and print the respective key is:

19 REM KEYPAD TEST

29 REM DISABLE <CONTROL C> |

39 CTRLC=2073: DISABLE =96: POKE CTRLC,DISABL
49 REM NOW SET POINTER TO KEYPAD LOCATION
50 P=57088: R2=4: C6=64: R1=2; C5=32

48

109 A$=" "

110 POKE P,R2: REM TEST FOR 8

120 IF PEEK (P)=C6 THEN A$="8" : REM ON R2,C6
13p POKE P,R1 : REM TEST FOR “#” '
149 IF PEEK (P)=CS THEN A$="#": REM ON R1,C5

49

SECTION 12
AC REMOTE CONTROL, SECURITY

A computer’s value over a calculator depends on its ability to change its sequence of computation based on the re-
sults already computed. This is particularly important when the values used in computation (decision) are data from
or to external devices. External devices use the data, binary 1's and @s, sent over lines from the computer as out-
put. The 1’s and @’s are represented by nominal 5 volt and @ volt levels (TTL logic levels), respectively. Likewise,
external devices can send data as input to the computer. Again, standard TTL logic levels are used.

Control, in the C4P, includes being able to turn on/off (and set the level of) AC controlled devices, such as
lamps, motors, and appliances. Control also includes being able to supervise security alarms, as well as numerous
status switches. All of these capabilities allow device operation while the computer is domg tasks of a more immedi-
ate priority.

In the next two sections, the most popular applications are considered. Then, in greater detail, the many possibili-
ties of additional options and capabilities are considered. By combining the capabilities of several features in one
program, great flexibility and power can be obtained. AIl of this is controlled by a readily written BASIC program,
based on the examples that follow. ‘

APPLIANCE CONTROL

Without running ‘any wires the C4P can operate lamps and small appliances when equipped with the AC-12
options! This is accomplished by using the BSR X-10 ©, a remote AC signaling system. The computer activates the
BSR command console which, in turn, sends a signal over the existing home wiring. This signal is sensed at the ap-
propriate device by a small switch module plugged into the AC outlet. The switches are modules which plug into the
wall sockets (119 volt AC power lines). The appliances are plugged into these modules.

Two types of switches are available, a lamp switch and an appliance switch. A continuously dimmable lamp switch
provides adjustable incandescent lighting levels (up to 309 watts per lamp) throughout a building. A relay actuated
(on-off) appliance switch provides control of larger devices such-as lamps (up to 5@ watts), motors (up to 1/3 HP),
or current loads of up to 15 amperes.

Each remote switch module has two dials. One selects ‘‘house.code.’” There are sixteen choices indicated by the
red letters A through P. The ‘‘house code’ on the remote module must match the ‘‘house code’’ on the control
console. The various ‘‘house codes’” prevent signals from other computers from actuating ‘‘non-mated’’ remote
switch modules. Each switch module also has a ‘‘unit code’’ dial (up to 16 units can be addressed), which permits
great flexibility in home/office control.

Lights in each room can be put on a different module Computer control permits turning lights on and off, one
room at a time. The timing and sequence, following directions under computer control, can be specified with snmp]e
commands. .

In order to run AC control programs, the use of support programs from the system disk (OS-65D V3.N AC) is re-
quired.

Software control of these remote switches requires running the previously stored program, “AC”, by typing

RUN"AC”

This brings the device driver programs from disk. The device drivers permit a rélatively'sifrlple set of commands to
control the more complex functions of the lamp and appliance switch modules. The user’s program must contain
a. A POKE to set the display screen state

POKE 249,1
will set a 64 by 32 character B&W (sound off) -display in the same manner as
POKE 56832,1

was used to set the display state (diScussed in video section)

50

b. Address 548 (224 hex) and 549 (225 hex) must contain the low and high bytes of the address of the AC driver
routines. o ' '
These are set by the commands
ZPOKE 548,127
POKE 549,50

Having taken care of the three required POKES, device driver programs can now be written.
The AC driver routines utilize a new BASIC command, ACTL, with the following format

ACTL DEVICE,COMMAND
where DEVICEs are numbered 1 to 16 and the COMMAND choices are as follows:

Function : : o COMMAND
Turn bn device _ . 65
Increase brightness (lamps only) ' . " 66
Turn all lights on (lamps only) : . 67
Turn off device ' ' S - 68
Decrease (dim) brightness (lamps onll-y) . R | o 69

Turn all devices oft 7({)

(The total range of dimming (brightening) is accomplished in 12 steps.)
If a light is in the off state, brightening it will result in its being turned on, first.

This ACTL command can be used to turn on device number 4 (plugged into a module which has had its unit di;zl
set to 4) by ' ' '

ACTL 4,65 <RETURN>
Muttiple devices, for example numbers 4 and 5 can be turned off, using the forniat
ACTL DEVICE1,DEVICEZ, . . . COMMAND <RETURN> '
as
~ ACTL 4,565 <RETURN>
Similarly, use of the format
ACTL DEVICE,COMMAND,COMMAND, .. .,COMMAND <RETURN>
permits brightening device #4 through th'ree.of the 12 levels of brightness by
ACTL 4,66,66,66 <RETURN>
Another variation of the ACTL command is
~ ACTL DEVICEH
ACTL DEVICEZ .
PROGRAM LOOP (LINES 300-400 IN FQLLOWING’ EXAMPLE)
ACTL COMMAND (LINE 500 IN EXAMPLE)
ACTL COMMAND (ADDITIONAL COMMANDS, IF DESIRED)
PROGRAM REMAINDER (LINE 600 IN EXAMPLE)
which can be used to slowly brighten device 1 and 2 simultaneously by
109 ACTL1

51

- 200 ACTL2
399 FOR TIME=1TO 12
40P FOR DELAY=1 TO 100 : NEXT DELAY
500 ACTL 66
609 NEXT TIME

For safety considerations, the command for “all off” (79), which turns off all lamps and appliances, was not matched
with an “all on” command. The “all lights on’ affects only the lamp modules.

There are now software commands to control one of the peripheral devices on the C4P system. New additions to
the peripheral family will be serviced in a similar manner to the devices already described. Now that each of the
available devices has been examined, they will be combined in a REAL TIME system. '

‘THE HOME SECURITY

The first level of home security can be met with the home security alarms alone. These devices provide checking
for fire, intruders or tampering with vehicles. All alarms report their status by radio-control to the home control
module, connected to the C4P computer (on J3 of the C4P back panel, Fig. 1). Each alarm module contains the sen-
sor, battery power, and a radio transmitter to assure a reliable and tamper-resistant operation.

The fire alarm can sense temperature (thermal contact) or smoke (ionization detector). The intruder alarms are
silent, magnetically actuated door or window position sensors. By combining these alarms with computerized re-
sponse, such as automatic dialing of the telephone emergency numbers, a rapid response to critical situations can be
managed. The car alarm senses car battery voltage change; a door opening or the radio or lights left on would actuate
the alarms. The intrusion and car alarms permit choice of immediate alarm or delaying for 15 seconds prior to
actuating (sounding) the alarm. This gives time to disable the alarm when entering the house normally.

Additionally, a hand held alarm is available for handicapped or bedridden persons. All alarms have an effective
radius of 200 ft. (6@ meters) from the alarm site to the computer home control module.

The alarms are located at the computer address 63232 and the alarm control at 632383. The alarms are enabled
(permitted to report back to the computer) by setting locations 63233 and 63234 to the values given in the fol-
lowing program:

19 REM PROGRAM AID ; LISTEN FOR HOME SECURITY ALARMS
20 ENABLE=0: HEAR=0 : TRIP=0
30 ALARM=63232 : CTRL=63233 : START=4"
49 POKE CTRL, ENABLE : POKE ALARM, HEAR : POKE CTRL, START
50 REM SET UP TO LISTEN TO ALARM LINES
60 FIRE=1 : BURGLAR=2 : CAR=4 : MISC=8
70 T1=PEEK(ALARM) AND FIRE
80 T2=PEEK(ALARM) AND BURGLAR
90 T3=PEEK(ALARM) AND CAR
100 T4=PEEK (ALARM) AND MISC
119 REM TESTS T1,T2,T3, AND T4 TO CHECK IF ALARM TRIP
120 IF T1=TRIP THEN PRINT “FIRE"
13@ IF T2=TRIP THEN PRINT “BURGLAR”
140 IF T3=TRIP THEN PRINT “CHECK CAR"
150 IF T4=TRIP THEN PRINT “MISC ALARM"
160 GOTO 70 |
170 END

52

In later examples, further alarm responses will be inco‘rborated. Alarm monitoring can be done while other
programs are being run. This powerful technique is available by use of the Real Time Monitor, RTMON. Many
other computer controlled responses can also be called. For example, AC, Appllance Control, can regulate light
levels or sound warnings; automatic telephone dialing can sumnmon aid.

The user has the ability to maintain detailed supervision of home security w1th the simplicity of conversational
instructions in BASIC.

53

SECTION 13
PARALLEL /0

EXTERNAL SWITCHES, ALARMS, OR INDICATORS

In AC control and home security systems, there is often need to sense switch openings or closings. Relay contacts
might indicate an air-conditioner “‘on’’ for an energy management system; an open window might be read as a set of
open contacts to a home security system. Individual imagination is the limit.

The C4P system provides (in the AC-21 package) the ability to sense 48 separate remote contact-pairs. Each of
these contact-pairs (lines) is to be at either @ volts or 5 volts (standard TTL levels). When these lines are computer
driven (used for output), a maximum of two TTL devices can be driven at a time. If devices other than OSI periph-
eral devices are used, be cautioned to use good circuit practices in interfacing circuits.

The input lines are grouped as 6 sets of 8 lines (6x8=48), or 6 input registers. Associated with each input register
(group of 8 lines) is a mask register (tells which of the 8 lines to ignore) and an active state register (tells whethera §
volt or @ volt signal is to be the chosen active state). The state of each line can be sensed by examining the register
bit which reflects the state of the connected line. In the case of windows, for example, it might be desired to identify
the active state as an open window in one program but in a different program to have the active state reflect a closed
window. Which one is desired will depend on the program.

The associated registers, i.e., the mask register and active state register, are used by the real time monitor,
RTMON, to systematically scan the input lines. When an input line becomes active, RTMON's services are re-
quested (in.the same manner as the count down timer requested service). Once again, discussion of how RTMON
uses these associated registers will be put off until after examination of the hardware which is used to support it.

The associated registers are memory locations which are examined to determine how to interpret switch positions.
In contrast, the hardware registers directly indicate line status, 5 volts or @ volts. The hardware registers also indicate
whether a set of lines is to receive signals (be read) or whether output signals should be sent to turn on/off devices
(to be written 10).
 External switches which can be used to provide 5 volts or @ volts are connected (through back panel connectors,
Figure 1) to a Peripheral /nterface A dapter (PIA). The PIA presents groups of input lines for input or output of
signals. These input or output lines are addressed in groups of 8 lines. The PIA is a single integrated circuit. Its or-
ganization and use are best explained in terms of its addressing, i.e., where the computer looks to input or output
data. For this purpose, a map is created.

54

PIA REGISTERS

Map of the hardware registers used for input and output,

Data Register ’ Control Register
Hex Decimal Decimal Hex
Location Location 7 9 Bit Location Location

C704 50948 [Port 1A

CTRL Register | 50949 C705
For Port 1A . -

C706 5095¢ | Port 1B

CTRL Register 50951 - C707
For Port 1B)

C708 50952 | Port 2A

CTRL Register 50953 C709
For Port 2A

C70A 50954 | Port 2B

CTRL Register | 50955 C7¢B
For Port 2B

Cc7¢C 50956 | Port 3A

CTRL Register | 50957 C70D
For Port 3A

C70QE 5p958 | Port 3B

CTRL Register | 50959 = C7¢F
For Port 3B

Each port A, port B pair is called a Peripheral Interface Adapter or PIA. These ports provide a way to enter data
from the outside world into the computer and to respond with computer-generated signals to the outside. The PIA
also holds or latches these input and output signals until the computer is ready to receive them (for input) or until
the outside devices can utilize them (for output). Each of the two ports on a PIA (port A and port B) contains 8 lines
which may be individually used for input or output. ') ‘ '

The CA-21 option contains three PIA’s. It is connected to the C4P computer by a 16 pin connector, J2, shown in
Fig. 1. External devices are connected to the three sets of input port pairs. Since three sets of port A-port B pairs are
accommodated (each port 8 bits wide), there are 3*2*8=48 lines available for external connection. ‘

The operating system will initialize the ‘scan of PIA’s to include a complete CA-21 option group of PIA’s as a
default. Scanning fewer PIA’s or scanning the PIA at 63232 decimal (F709 hex) will require making the changes
(POKEs) just illustrated. ' o

For example, to scan all 48 lines starting at 50948 decimal (C7¢4 hex), all six data registers (ports 1A, 1B, 2A, 2B,
3A, 3B) must be scanned along with six control registers. Therefore, location 8992 decimal must be loaded with
12—1=11 (the number of scanned registers minus one). These POKEs can be accomplished as

POKE 8902,11 : REM LOOK AT ALL 6 DATA AND 6 CONTROL REGISTERS
POKE 8909,4 : REM LOWER HALF OF C704 PIA PORT ADDRESS
POKE 8919,199 : REM SINCE C7 hex=199 decimal

(Only decimal values may be used with POKEs.)
With these POKEs, RTMON will check for an active state.

The foregoing has been a review of the connections to the PIA. Now look at the operation of the PIA. The ports
(port A and port B) serve two purposes. Each port accomodates input or output signals. Additionally, these port A
and port B pairs serve as data direction registers. When serving as a data direction register, the port specifies which
bits serve as input and which serve as output bits. The action of the port, whether it serves as an input/output port or
as a data direction register, is set by yet another register, called the control register. A control register is associated
with each port. If the control register is POKEd with zeros, then the port serves as a data direction register.

When the control register is POKEd with a 4, the port reverts to its data handling function. By using a data port to
serve as a data direction register, the number of hardware connections is reduced. But to understand its increased

55

complexity of function requires paying the price of additional work. To illustrate, for example, the use of the PIA to~
read port 1A at location 50948 (C7@4 hex), the steps are '

1. POKE 509490
This address, one beyond the PIA port 1A address, is the control register for port 1A. A zero in the control
register will allow the use of the PIA port 1A address for its alternate use, designating which bits are input or
output (called a data direction register). A one indicates output, a zero an input. At the completion of this
POKE, the control register contains : i

50949 0000 POPD

and the port 1A will serve as a data direction register. Therefore, the command

2. POKE 5@0948,127 ' .
will place the bit pattern §111 1111 into the data direction register. The data direction register will now be

50948

Bit 7, the leftmost bit of the data direction register contains a @ indicating that its corresponding line will be an
input line. The other register bits (bits @ to 6) are 1’s, indicating that their corresponding data lines will serve
as output lines. '

3. The PIA port 1A is now ready to revert to its data handling functiqn. This. is achieved by
POKE 509494) .
which commands the control register for port 1A to per>form its 1/0 fuhction.’ .
4. Bit 7, the leftmost bit, was previously'set as an output bit in step 2. THis outpui can be set to a high value by
POKE 5094864 | |
This is a bit pattern 19009 @P@P. The data register (the alternate function of the port) will now contain
509481000 0000 ‘
Likewise bit 7 could have been set to a zero by
 POKE 509480 B |
5. If it were desired to read bit 6, which was Qesignatéd as an input bit, the result could be
BIT6=PEEK (50948) AND 64 |

where 64 has a bit pattern #1909 99@9. The 1 in the bit pattern corresponds to the desired line. To the user,
location 50948 appears as :

7 6543210 bit

1 .
50948 | X | or | X | X [X | X | X | X
9

where X indicates that A doesn’t care about the value. By ANDing the contents of 50948 with the value

21000000

only the value of bit 6 will be examiﬁed. If bit 6 of 50948 is a zero, lhAen BIT6=0;if bit 6 is 1, then BIT6=64.
Testing for zero or non-zero value of BIT6 provides a convenient programming test to determine the bit 6
input line state. :

The socket pin connections are shown in appendix. B; socket mating information is also provided.

56

A short program-to make all lines for port 1A into read (input) lines and all lines for port 1B into write (output)
lines follows:

5 REM PIA INITIALIZATION SUBROUTINE AT 1000
10 GOSUB 1000
20 INPUT “SIDE (A OR B)".C$
30 IF C$="A"GOTO 190
40 IF C$="B"GOTO 209
50 GOTO 20 ,
100 IF A$="1"GOTO 150
. 119 INPUT “OUTPUT TO A”;K
129 POKE X,K
139 GOTO 20 |
150 PRINT“INPUT TO A IS":PEEK (X)
169 GOTO 20
200 IF B$="1"GOTO 250
219 INPUT “OUTPUT TO B";K
220 POKE X+2K , . | |
239 GOTO 20 o
250 PRINT “INPUT TO B IS”;PEEK (X+2) ’
260 GOTO 2
1000 INPUT “STARTING ADDRESS OF PIA™:X
1910 INPUT “A SIDE | OR O";A$
1929 INPUT “B SIDE | OR O";B$
1039 POKE X+18:POKE X+3, : REM SETTING CTRL REGISTER TO ZERO
1049 IF A$="1" THEN POKE X0 : REM PERMITS SETTING DATA DIRECTION REGISTER
1042 IF A$="1" THEN GOTO 1950
1045 POKE X,255 : REM IF NOT INPUT, THEN SET AS OUTPUT
1050 IF B$="1" THEN POKE X+2,0
1952 IF B$="1" THEN GOTO 1060
1055 POKE X+2, 255
1960 POKE X+1,4:POKE X+34 : REM CTRL REGISTER TO FORCE I/0
1079 RETURN

Multiple lines may be checked at one time.

57

The home security system addressed at 63232 (F700 hex)-is also a PIA port. It is one of two ports. Two ports (of 8
bits each) are available, with the first 4 bits being reserved as:

Car Alarm lnlruder Alarm
Misc.
Alarm Flre Alarm
Location (Hex) Bit7 6 5 4 3 2 1 .

63232 F100 Port A

63233 F781 , CTRL A

63234 F782 Port B

63235 F703 CTRL B

A program to handle this device is similar to the previous programs. For example, to check for a fire alarm
10 REM SET PORT A AS INPUT, LOOK AT BIT @, THE FIRE ALARM BIT
29 POKE 632330 : POKE 63232,1 : POKE 632334
30 IF PEEK (63232) = @ THEN GOTO 109

40 GOTO 20 - ‘
This_program segment will conlmually look at the input port and check for the bit assigned by OS/ to fire alarm
checks.

58

SECTION 14
CONNECTION OF SIXTEEN PIN BUS DEVICES

Ohio Scientific is pleased to introduce a unique new product line—The 16 Pin 1/0 BUS. With this system, it is
possible to add up to eight special function boards while occupying only the backplane slot.

This is made possible by a novel BUS extension method which allows decoding and tlmmg signals plus eight bits
of data to be carried on standard, inexpensive 16 pin ribbon cables.

Up to eight inexpensive 16 pin cables with standard DIP connectors may be attached to a smgle CA-20 board
which in turn occupies one slot of the standard Challenger backplane. Alternately, one 16 pin 1/0 BUS cable' may be
attached to the A-15 board at the rear of all C4P products. - Note, in the case of the C4P-MF this allows system ex-
pansion beyond the normal four slot backplane. , N

Currently, five HEAD END CARDS are available for interconnection to the system via the CA-2¢ or CA-15
boards.

COMPUTER INTERFACE TO SIXTEEN PIN 1/0 BUS

The 16 pin I/0 BUS may be attached to the computer via two diﬂ"erént boards—the CA-15 or thé CA-20. The
descriptions of these boards are as follows:

CA-15 BOARD

The CA-15 board is a standard accessory interface installed on the following Ohio Scientific systems: C4P-MF,
C4P-DMF, and C8P-DF.
The CA-15 is mounted at the rear of the computer -and contains the following interface connection:

Joystick and nuimeric keypad

Modem and serial printer

Sixteen PIA lines (normally used for the Home Security system— AC-17P)
Sixteen Pin 1/0 BUS

The interconnect for the Sixteen Pin 1/0 BUS is simply a 16 pin DIP socket. To use the BUS, the only thing nec-
essary is to attach one end of the 16 pin ribbon cable to the CA-15 board and the other end of the cable to one of the
HEAD END CARDS.

Please note that some of the HEAD END CARDS require more power than may be practically carried via the rib-
bon cable alone. Therefore, some of the cards require auxiliary power supplies.

CA-20 BOARD

The CA-20. board contains all the necessary logic to decode eight distinct HEAD END CARD interfaces. The ac-
tual interconnect, as with the CA-15, is via simple 16 pin DIP sockets and standard 16 pin ribbon cables.

The CA-20 board also requires one slot of the computer’s backplane. But remember, from this one slot access is
gained to a maximum of eight accessory boards.’

The CA-20 is recommended for use in the Ohio Scientific C2 series and C3 series computers. It can also be in-
stalled in C4P and C8P series systems with some modification to the CA-15 interface.

Since the logic required for the 170 BUS interface is simple, an additional feature was added to the CA-2@ board —
a crystal controlled *‘time-of-day’’ clock (hardware) subsystem. The operation of the clock, excepting reading time
. and setting time, is totally independent of the host computer. As a matter of fact, with the included on- -board, auto-
recharging, battery back-up, the computer may actually be turned off for several months without losing time.

The features of the clock subsystem are as follows:

Hours, minutes, seconds and 1/1@ seconds
Day of week

59

- Day of .month.
Month of year
Four Year calendar

In the C2 and C3 series computers, the CA-20 board can actually control the power cycling of the entire computer
when equipped with an.optional power sequencer package. This means a time (month, day, hour, etc.) may be pre-
set within the clock subsystem and when that preset time agrees with the actual time, A.C. power is applied to the
entire computer system through the power sequencer. At a later time, the system’ s A. C. power may also be re-
moved and the system shut down under software/clock subsystem control.

For applications where the clock subsystem is not required, the CA-2@A will perform all the Sixteen Pin I/0 BUS
functions associated with full-feature CA-2(0.

HEAD END CARDS

HEAD END CARDS is a general name used to descnbe any or all of the special function boards which attach to
the Ohio Scientific Sixteen Pin 1/0 BUS. There are currently five such boards and, with the exception of the CA-22,
they will only interface with the computer via the Sixteen Pin 1/0 BUS.

Please note, as detailed earlier, a CA-15 or CA-20 board must be used at the ‘‘computer end’ of the Sixteen Pin
I/0 BUS to complete the interface. .

In the following pages a brief product and application descnptlon of the currently avallable HEAD END CARDS
will be presented.

THE CA-21 BOARD— BIT SWITCHING AND SENSING

The CA-21is a 48 line parallel I/0 board featuring three 6821 PlAs (peripheral interface adapters) and prototyp-
ing/interconnect areas. .

The use of PIAs in the.design allows for maximum interface versatility as any one of the 48 1/0 lines may be con-
figured as either an input or an output. As outputs, each line is capable of driving a minimum of one standard TTL
load.

Additional versatility is added because 24 of the lines, when configured as outputs may simultaneously function
as inputs. This feature, although somewhat confusing, is extremely useful for appllcatlons such as switch matrix
decoding.

Each of the 48 lines is brought out to two foil pads (suitable for wire wrap stakes) as well as a location on one of
four 12 pin Molex-type female edge connectors. There are also eight 16 pin DIP socket locations which are intended
for use as prototyping areas. Additionally, the 12 PIA ‘‘hand-shaking’’ lines are brought to 12 single foil pads.

The CA-21, with proper buffering, may be used for virtually any computer controlled bit switching or bit sensing
application imaginable. With-a full complement of eight CA-21s interfaced via the CA-20, a total of 384 individually
controllable 1/0 lines are possible!

An interesting application using one CA-21 board would be a complete, if somewhat slow, emulation of the
standard Ohio Scientific BUS.

A more practical application might be augmentmg the standard Home Security System (AC-17P) with “hard-
wired”’ sensors.

One type of sensor easily added is a standard window ‘‘perimeter detector.” ThlS could be done with commer-
cially available adhesive foil tape. A break-in (through a broken window) could then be detected by sensing a break
in the foil tape. ‘ '

Another useful application that could be set up in concert with the AC-12P wireless A.C. Remote Control, is
sensing when a room is entered. This could be accomplished with pressure-switch door mats or door switches.
When room entry is detected, the lights could be turned on or turned off on exit.

For designing any sort of dedicated control system, the CA-21 is an ideal choice. It is possible to easily sense many
types of input (pressure transducers,. flow sensors, switches, etc.) while controlling outputs from a simple single
LED display to a network of solid state relays controlling A.C. power. '

THE CA-23 BOARD—EPROM PROGRAMMER

The CA-23 is an EPROM programmer designed for use with the growing families of 5 volt only EPROMS. With
the CA-23 you can program and verify all 1K through 8K byte EPROMs of this type. Note that these parts are often
identified as-8K —64K bit EPROMS.

The CA-23 can program (or verify) data in two basic modes—EPROM to/from EPROM or EPROM to/from

60

computer RAM memory. Additionally, EPROM data may be read directly into the computer’s RAM memory.

There are four LED indicators on the CA-23. The first.is *‘SOCKET.UNSAFE.”’ This means that a-programming
voltage is present at the socket and if an EPROM is removed or inserted it is likely to be damaged.

The second indicator is ‘“‘PROGRAMMING.” This means that the EPROM is currently being programmed.

The third indicator is ““ERROR.”” This means that somewhere along the line a programmmg attempt was unsuc-
cessful.

The final indicator is “ PROGRAM COMPLETE.” ’ This means that the program and venﬁcatlon were successful.

The most intriguing application for this product is the creation of ‘‘custom’’.parts for the computer or peripherals.
This could range from a new system monitor to a new high level language. lt could even include a new character
generator for the CRT or printer. Note, however, tinkering around with the internals of computers and peripherals
requires a fairly high degree of technical expertise. Also, most manufacturer’s warranties are voided by these types
of modifications. ;

Several OEM (original equipment manufacture) and Research/Development applications. will be 1mmed|ately
obvious to those involved in that work.

The CA-23, as previously mentioned, is designed for use wrth 1K through 8K byte EPROMS. These parts come
in various package styles and have various product names. For example, Intel’s 2K 'x 8 part is the 2716 Texas
Instruments’ part is known as the 2516.

The CA-23 has both 24 pm and 28 pin zero insertion force sockets for reading, programmmg and verlfymg the
EPROMS.

THE CA-24 BOARD— PROTOTYPING

The CA-24 is a solderless bread-board designed for prototyping, experlmental and educatlonal apphcatrons

The bread-boarding is made up of seven solderless plug-strips of the type manufactured by AP Products. Two of
the plug-strips contain a connection matrix of 5 by 54 connections and are used as signal distribution points.
Another pair of 96 location plug-strips are for powering the bread-board area. The actual experimenter area is com-
prised of three plug-strips, each with a 10 by 64 location connection matrix. Additionally, sixteen LED mdlcators
and sixteen DIP switch positions are provided for signal observation and control functions.

Board 1/0 is via TTL latches and bi-directional PIA ports as well as direct (buffered) data, signal and control lines
from the computer BUS. This method allows you direct interconnection of devices such as 685(0 ACIAs in addmon
to doing more ‘‘isolated’” and/or independent circuits.

The CA-24 also contains a “‘clock’ generator which is continuously variable from approximately 25,{0@(0 Hz.
through 70,800 Hz. It is also possible to connect the clock to an on-board 16 stage divider chain. This allows division
of the fundamental frequency by as little as 21 (2) to as much as 2'6(65,536).

The applications for the CA-24 are primarily prototyping and experimenting. Parts may be inserted and removed
from the terminal strip blocks over and over. Interconnection of parts is accomplished simply through the use of
solid, narrow gauge wire jumpers. Errors in design or connection are extremely easy to correct.

The CA-24 lends itself very well to structured experiments that are common in the educational envrronment Itis
an ideal tool to aid in the teaching of computer and computer mterface fundamentals :

THE CA-25 BOARD—ACCESSORY INTERFACE

The CA-25 is designed to implement some of the functions normally associated with the CA-15 interface board.

It allows direct connection of the Home Security System (AC-17P) and/or the Wireless A.C. Remote Control
System (AC-12P) to C2 and C3 series computers. Additionally, those who own an older Ohio Scientific computer
can now easily connect these systems to it. I

An extremely useful application of the CA-25 is associated with small business systems. Using the CA-25 with
the Home Security System, and perhaps a CA-15V (Universal Telephone Interface with speech synthesrzer output),
the computer could do payroll, inventory, etc. by day and ‘‘guard’’ the shop by night.

THE CA-22 BOARD—ANALOG I/0

The CA-22 is a high speed analog 1/0 module. Although the CA-22 is classified as a HEAD END CARD, it
differs from the rest of the family in that it may also be plugged directly into the computer s standard internal BUS.
This allows for maximum flexibility in the use of the CA-22.

The analog input section of the CA-22 consists of a 16 channel analog multiplexer. This means that up to'16
separate signals may be connected drrectly to the CA-22. Also mcluded is a sample and hold circuit followed by the
analog to digital converter circuitry.

61

The A to D converter is capable of elther 8 bit or 12 blt operatlon These options are selectable under software
control.

The accuracy of the converter is plus or minus one in the least s1gmﬁcant bit. The stablllty of the c1rcun is rated at
one millivolt drift per degree Celsius.

The A to D conversion is extremely fast. It is capable of digitizing up to 66,090 samples per second in the 8 bit
conversion mode and 28,000 samples per second in the 12 bit mode. Shannon Sampling Theory .states that signals
should be sampled at twice the highest frequency present. Therefore, it is possible to convert signals with a frequen-
cy greater than 30K Hz. Clearly, high fidelity audio is well within the spectrum of the CA-22.

The multiplexer has very high impedance inputs and is capable of accepting inputs in the range of —1@ volts
through + 10 volts. The input is jumper selectable for other settings mcludmg a single sided range of @ through + 19
volts.

Due to the indeterminable nature of the actual mputs that may actually be applied to the CA-22, only the multi-
plexer inputs are brought out. However aquad op amp is laid out in foil which may be populated in several dlﬁ"erent
modes to handle some of the.more ‘‘common’’ input configurations.
~ The analog output section of the CA-22 consists of two identical high speed digital to analog converters. Each
DAC can convert either 8 bits or 12 bits of data. Data input to the DACs is latched in such a manner that, when in
the 8 bit conversion mode, the other four (of the total of twelve) bits are contmuously output at a predeﬁned value
which may, of course, be defined under software control.

The output of each DAC is buffered with a high speed op-amp capable of changing output voltage at the rate of 20
volts per microsecond. The standard configuration of each output is bi-polar with a voltage swing of — 10 volts

- through + 19 volts. This is jumper selectable to allow a uni-polar output of @ through + 10 volts.

Some additional 1/0 capacity is provided on the CA-22. There are three TTL level inputs and six open collector
logic outputs. These are strappable to be eithér standard TTL level outputs or high-voltage outputs.

The CA-22 can be used for a multitude of analog sensing and/or analog controlling applications.

Using the proper transducers and the 16 input channels, it is possible to monitor the temperature-in several zones
of a home or office. By extending this system with a CA-21, precise temperatures can be maintained by switching
the proper controls on and off.

Another interesting, if somewhat obvious application, is in audio processmg Reverberation, phase shifting and
echoing are just a few of the uses implementable.

If blocks of RAM were used for data storage, other experiments such as frequency doubling, etc., could be per-
formed.

If more sophisticated software techmques such as fast Fourler transforms are applied to store input data very
elaborate signal processing becomes realizable. Projects such as audio spectrum analyzers and speech recognition
experiments are certainly practical. Note, in these types of applications, it is likely that some signal pre-processing in
hardware is certainly beneficial —if not totally necessary.

Employing both DAC outputs and the on-board unblanking circuit, X-Y oscnlloscope plotting is an interesting ap-
plication. By using these techniques and one or more of the analog inputs, a digital storage scope can be constructed.
Note, both of these applications require access to an oscilloscope capable of X-Y input as well as blanking.

SUMMARY

With the introduction of the 16 pin 1/0 BUS Ohio Scientific has opened a new world of interfacing capabilities for
both the large and the small computer user.

Systems ranging from totally automated sampling and control stations to complete R/D setups to educational lab
stations are now available via standard building blocks and standard computer systems.

For pricing and availability, contact the nearest Ohio Scientific dealer.

62 i

SECTION 15
MODEM AND TERMINAL COMMUNICATlONS

Each character stored or moved is represented by 8 bits (ones or zeros). Normally, there is data on eight data lines
(called a data bus), simultaneously. This is convenient when the cost of maintaining multiple lines is low, due to
short line lengths. For longer lines, extra circuits for each line are necessary to maintain data signal fidelity. Also,
the cost of maintaining long data lines must be balanced against the speed and convenience of having all data bits si-
multaneously available. :

Certain devices require serial data handling. Serial data handling treats one bit (off-on) at a time, rather than all
data bits simultaneously. The serial devices are low speed, with no ability to simultaneously transmit or receive
more than one bit at a time. Bits are collected by the serial data device until a complete character is available. Then,
when the complete character has been received, it is sent in parallel (all bits simultaneously) to the computer for
processing. Serial data is handled by an A4 synchronous Communications /nterface 4 dapter (ACIA) which con-
verts the parallel (simultaneous) data into serial data for transmission (or reverses the process for reception).

A simple analog might suggest the function of the ACIA. Consrder that the input from a computer is typrcally 8
parallel, simultaneous, input bits. o
A picture analogous to this process can be seen, as in Fig. 18A, by consrdermg the placmg of black and whrle mar-
bles, simultaneously, into the holes in a pipe. -

Fig. 18A Marble Placement

If those marbles are now rolled out the left end, a time séquence of marbles is seen, as in Fig. 18B.

Fig. 18B Marble Time Sequence

The ACIA performs the electrical equivalent of this action. For devices limited to low mechanical speeds (such as
printers and plotters) or low data rates (such as telephone lines and modems), this serial (or sequential) handling of
data bits can be tolerated. The advantage is the economy of requiring fewer wires (and the circuits to drive them).
Whereas parallel transmission requires 8 wire pairs for simultaneous presentation of all 8 data bits, serial transmis-
sion is accomplished by the use of only 1 pair, as iilustrated in Fig. 19.

63

PARALLEL , SERIAL -~ PARALLEL SERIAL

DATAIN~*® DATA OUT. " DATA OUT ™ DATA IN
B — Baa—
1 aca e = | ~Aca
——d aane
i -
——t I —

Fig. 19 Parallel Verses Serial Transmissions) -

"The system will normally be set up with the infofmation handling rate (baud rate) set at 120@ bits per second
(1209 baud). For the modem use, this must be changed to 309 baud. The two choices are given by

POKE 645121 : REM 1209 BAUD RATE
or
. POKE 645122 : REM 300 BAUD RATE

In contrast to the ACIA, Parallel Interface Adapters (PIA’s) handle all 8 bits of a character’s data snmultaneously
These serve as interfaces to the outside (of the computer) world.
The ACIA’s output is available on J8 for the printer output and J9 for the modem connection, as shown in
Figure 1.
An. ACIA driver program, which is used to drive a slow printer, is shown in the next section.
The following is a general summary of the sequence of steps necessary to use the C4P as a terminal:
1. Connect a modem to the modem port, J9.

2. Load the modem program provided by Ohio Scientific into the C4P. When it is loaded the computer Will re-
spond READY.

3. Dial the number of the remote computer. When the number dialed answers there should be heard a high
pitched tone. Insert the phone in the modem and follow the instructions displayed on the screen. The com-
puter called will probably require the entermg of a user code and password.

The use of acoustic coupled modems extends the resources of the C4P without requlrmg commitment of availa-
ble computer slots. The power of the C4P is not limited by this feature.

Ohio Scientific now offers Compuserve packages containing documentation and software designed to enable OSI
personal computers equipped with modems to fully access the Compuserve (formerly Micronet) System. Contact
your dealer for more information. ‘

64

* SECTION 16
PRINTER COMMUNICATIONS

The printer and the modem are served by lhe ACIA Both devices require low data rates, due to hmlled frequency
response of the devices (whether from mechanical reasons or electrical reasons).

Either a serial printer or a telephone line modem may be attached to the ACIA output (J8 for printer, J9 for
modem, as specified in Figure 1.). However, only one of those devices may be connected at any one time. That is,
power may not be applied to the printer and modem simultaneously. It is possible to store modem data on disk files
for later printing, so this is not a difficult restriction. Only one device will have its input accepted at one time.

The C4P Cassette based system, which uses BASIC-in-ROM, can output to the printer in the same manner as
output to cassette. If the command SAVE is entered, then all subsequent output which would normally appear on
the screen is routed to both the screen and the printer. Output will continue to be routed to the printer as well as'the
screen until the user enters the followmg sequence of commands: . _ . .

LOAD <RETURN>
<SPACE> <RETURN> . : : . :

These two commands terminate output to the prmter in the same way that they terminate output to the cassette re-
corder when the switch is set for cassette input/output. '
For example, a program in the workspace can be listed on the printer by the following series of commands:

SAVE
LIST
LOAD
<SPACE>

As usual, each of these commands should be followed by <RETURN:>. The program will begin listing after the com-
mand LIST is entered. The command LOAD should be entered after the LISTING is complete. If the printer is not
on line or is connected incorrectly (or if the selector switch is turned to printer when no printer is connected) then
the computer will stall when the command LIST is entered until the problem is corrected or <BREAK> is depressed.

If a program is RUN after the command SAVE is entered the the results of any PRINT statements are displayed
on both the screen and the printer.

9-DIGIT EXTENDED BASIC UNDER O0S-65D—PRINTER USE

When 0S-65D is being used with C4P MF, output can be directed to the printer by changing the output flag. This is
accomplished by a disk operating system command. The following illlustrates the method of accomplishing this:

DISK!“IO, @1" — this directs subsequent output to the printer only
DISK!"IO, 92 — this directs subsequent output to the screen only
DISK!"“IO, @3" — this directs subsequent output to both the printer and the screen.

The default mode sets the output flag to send output to the screen. The output flag is automatically reset to @2’
(the screen) whenever the computer encounters a snytax error or an abnormal condition such as a CONTROL-C
halt to a listing or run of a program.

For the purposes of printer output, setting the output flag to “Q)3” has very much the same effect as entering
SAVE when using BASIC-in-ROM. The output to the printer can be terminated by resetting the output flag to 92"’
with the command DISK!*“10 , @2.”

Under OS-65D the command LIST# 1 can be used to list the contents of the workspace on the printer without the

65

necessity of changing the output flag with the DISK"‘IO” bommand The program is listed only on the printer (not
on the screen) when this command is entered. . 1o

A further discussion of the 1/0 capabilities under OS 65D is covered in the appendix.

Alternatively, PEEKS and POKES can be_ used to address the ACIA port, directly.

The ACIA port may be. addressed by using the ACIA control‘ register-address of FC@@ hexadecimal (64512
decimal) and its data register of FC@1 hexadecimal (64513 decimal). Reading or writing can be accomplished using
the BASIC PEEK and POKE commands.

The simple program for use of the printer is:

5 REM PRINTER PROGRAM
19 POKE 645121 : REM SET 1209 BAUD RATE
20 A$="NOW IS THE TIME FOR ALL GOOD MEN" -
39 FOR T=1TO 20 : REM PRINT 20 TIMES
49 FOR K=1 TO LEN (A$) |
50 A=ASC(MID$(A$K,1))
60 FOR DELAY=1TO 2.: NEXT. DELAY
790 REM WE HAD A SLOW PRINTER
8p POKE 65413,A
99 NEXT K : REM MESSAGE COMPLETE
109 POKE 65413,10 : REM LINE FEED PAPER
. 119 POKE 6451313 : REM CARRIAGE RETURN
" 1120 NEXT T : REM DO ALL 20 LINES
139 END
prints the message
NOW IS THE TIME FOR ALL GOOD MEN

twenty times, illustrating the AClA function. This program was desrgned to overcome device lrmltatlons specifical-

ly a slow printer.
The alternate method of addressing the ACIA for prmter control is called 1/0 Commands lt is detailed in the Ap-

pendix, as are examples of its appllcatlons

v

66

SECTION 17
'ADVANCED TOPICS

Advanced topics include extensions of previously exammed subjects and introduction to new toplcs which are of
need to very spemﬁc users. A high level of support is "available from OSI software. Some aspects have been men-
tioned in prior sections. Details which are required for definitive use-can be found in the appendix of this manual or
in the specific manuals on each subject. All of these toplcs are of an advanced nature, beyond the earlier treatments.

PLOT BASIC

In the graphics section, the character set was examined and produced dlsplays for non-text materials. The ability
to write programs adequate to plot a curve is well within the skill of the user who has read this far. The convenience
of obtaining plotting by using a function, such as SIN(X) for LOG(X), requires adding these new plotting function
names to the reserved list of names in BASIC. For this convenience, and the many details it requires, OSI provided
an advanced plotting package, PLOT BASIC.

There are nine functions available in PLOT BASIC, named PLOT@ through PLOTS. These functions allow the
user to plot single squares, lines or rectangles with any of 256 characters and any of sixteen colors in the 32 x 64
mode. Two functions allow higher resolution point and line plots. Two functions allow the user to call, by name, a
. previously stored figure to the screen and move it in any of eight directions; off the screen and back on, saving and
restoring any background.

For plotting purposes, the squares on the screen are assigned Cartesnan coordinates (x,y coordinates) with the
default origin at the lower left corner of the screen. The position of the origin may be changed by PLOT@. PLOT(
through PLOT4 and PLOT7 and PLOTS are ‘‘standard resolution’’ commands with the x-coordinates of the squares
on the screen ranging from 9 to 63 and the y-coordinates from @ to 31. On most monitors, some of the squares with
high or low y-coordinates will be invisible. PLOTS and PLOT®6 allow the user to reference the screen in a higher res-
olution 64 x 128 mode. Thus, for PLOTS and PLOTS, the x-coordinates range from @ to 127 and the y-coordinates
from @ to 63. PLOT® through PLOT6 do not allow the user to reference coordinates outside the ranges given above.
PLOT7 and PLOTS, however, allow the user to reference coordinates off the screen with both x and y ranging from
—128 to 255. These exhibit a ““wraparound’’ effect with coordinates that differ by 256 referencing the same point,
for example, x = 128 is the same as x = —~128 or x = —1 is the same as x = 255,

The PLOTBASIC package provides high resolution while retaining simplicity of use. It can serve applications in
. business, science, and teaching with equal facility, since the calling function is just another BASIC function.

FILES

In a disk operating system, the efficient use of the disk resource is provided by foresight in file organization.
Short, modular programs to perform a specific service should be stored on disk. Each file can be called by name or by
disk location. The disk resident programs which are called use the same region of memory as a previously run disk
program (called overlaying). The use of disk programs permits large programs, broken into modules, to run without
- the need of much memory. The price paid is the delay in transferring program from disk to memory. Short, re-
peatedly used programs should stay memory resident to prevent the waste of time in threshing about from disk to
memory. Longer, less frequently used programs should be stored on disk and called in for use as needed.

The specifics of storing and recalling files has been covered in Section 9, *“Storing Files on Cassette or Disks.”” 1/0
distribution, the use of DOS and BASIC commands for detailed handling is covered in Appendix K.

Examples of embedded file commands are found in Appendix M, ““USR (X) Function.”” Examples which bring in
rapidly executing machine code routines, for example, screen clearing routines, require only a single line in the BA-
SIC program in order to be called from disk. In contrast, the equivalent BASIC program would be uncomfortably
slow.

The key to efficient use of disk is modularity of programs, where transfer of programs from disk occupies a small
fraction of the total program running time.

67

HOME CONTROL AND REAL TIME OPERATING SYSTEMS
REAL TIME CONTROL OF DEVICES

The heart of AC control lies in being able to run programs of immediate interest while a secondary program sits
““in the background’” waiting to be run. At periodic intervals, set by a hardware timer, the primary program (“‘in the
foreground” of the computer’s attention) is exited, at which time the secondary or background task is serviced.

Then the primary task is re-entered and execution picked up where it was previously left. Note that all of this is hap-
pening very rapidly.

Background tasks are simple, rapidly computed programs Wthh require periodic attention. Updating a clock dis-
play or checking home security status are examples of such a task.

The operating system O0S-65D V3.2 HC contains a program “RTMON” which decndes which program fore-
ground or background, should be run.

In addition, there are three programs, AC, AC1 and AC2 whnch support the use of AC control accessories. The
program AC contains no buffers; AC1 contains 1 buffer; AC2 contains 2 buffers. When making copies of this disk,
copy only the version of this AC control program (AC, AC1 or AC2) needed.

The demonstration disk will show some examples of the usefulness of AC control.

To facilitate writing personalized programs, the following sections will show the features

1. time of day clock
2. timing events

3. AC control and home security switches

Later sections will show how to integrate these features into a real-time system for personal applications.

REAL TIME CLOCK
TIME OF DAY CLOCK

The clock is a basic building block of a real time control system. The time of day clock does not have to be en-
abled,; it runs continually under the 3.N HC operating system. To set the time of day clock, hours are entered into
location 9480, minutes in to 9481, and seconds in to 9482. The commands are

POKE 9489,H (H= number of hours)
POKE 9481,M (M= number of minutes)
POKE 9482,S (S= number of seconds)

The clock is a 24 hour clock which resets the time at 23:59:59 back to §:0:0. 4Location 9493 holds the count of the
number of 24 hours periods (i.e., days), which have been counted.
Time is read by the PEEK command. For example:

19 REM INPUT TIME TO SET CLOCK
20 INPUT “HOURS, MINUTES, SECONDS";HM,S
39 POKE 9480 H:POKE 9481,M: POKE 9482,S
40 REM NOW TO PRINT OUT TIME
50 H=PEEK(9480):M=PEEK(9481):S=PEEK(9482)
60 PRINT H; “:"’;M;“:”;S;“LOCAL TIME”
70 END
will permit setting, then displaying the time. Replacing s'tatemept-m with
70 GOTO 5p |

will continually print the time.

68

The time entry for 2:49 A.M. and 2 seconds, would be
2,40,2 <RETURN>.

where a comma separates each numerical entry.

COUNT DOWN TIMER

The count down timer is an event tlmer which functlons like an egg timer. A time count is loaded (set into) the
timer which then counts down to zero. ‘

Rather than have to check the current value of the timer count, a flag is raised when the count reaches zero.

To operate the count down timer, the count down timer is loaded with the hours in location 224, the minutes in
location 225, and the seconds in location 226.

Starting the count down timer is accomplished by placing a 1 in locatlon 223. Dlsablmg the count down timer
(turning it off) requires a § in location 223. :

A program to set the count down timer and start it running is

19 POKE 2230)

20 INPUT “HOURS, MIN, SEC COUNTDOWN";H,M,S
39 POKE 224.H '
49 POKE 225M

50 POKE 226,S

60 REM NOW START TIMER

70 POKE 2231

A program could check the one variable, “‘TEST,” to determine whether the hours mmutes and seconds had
elapsed by

80 TEST = PEEK(224) + PEEK(225) + PEEK(226)
99 IF TEST=@ THEN GOTO 1009
109 GOTO 89 g
10000 PRINT “TIME IS UP"

The real value of the timer, however, lies in its ability to request the services of the real time momtor RTMON.
RTMON permits interrupting user programs when the count down timer reaches zero. This switching of priorities
from one program to an interrupting program allows flexible programming. These uses will be- dnscussed further
after looking at some other devices and features available for home and appliance control.

REAL TIME MONITOR, RTMON

The Real Time Monitor, RTMON, acts as a watchdog, responding when either the count down timer counts down
to zero or a PIA device is sensed to be “‘active”’. The internal computer hardware interrupts processmg every 400
milliseconds (.4 seconds) to update the count down timer and the time of day clock.

Should either the count down timer go to zero or a PIA device line go ‘‘active’, then computer control is
immediately passed to the program, RTMON. Within ‘the program RTMON you may decnde what action is to be
taken.

A typical RTMON program should deactivate the timer by

POKE 223,90

This allows servicing the interrupt without having the timer time out. This would avoid two interrupts occurring
simultaneously; however, this uncertainty of occurrence accounts for only a few microseconds. Examining the
timer contents and the PIA lines of interest will determine whether a PIA or the timer requested service. Before
exiting RTMON the program should ' '

POKE 222,1

69

to re-enable RTMON so the RTMON can be recalled by future interrupts. If there are no further programs to return
to from RTMON, then RTMON can be terminated with a return to BASIC by

RUN“BEXEC*" : END

The operating system will then turn control over to the BASIC interpreter. -

Within the operating system (specifically the OS-65D V3.N HC, Home Control Operating System), certain provi-
sions are made for monitoring and responding to all PIA lines. These special provisions are made for the devices
hung on the 48 lines from 50948 to 50958 (C794 to C79E hex) and for the 16 lines at 63232 and 63234 (F7¢[b and
F702 hex).

To sense an “‘active’ state on a PIA line, each register of the PIA is matched to two associated registers. A ‘‘mask
register” (this indicates which bits of the PIA are to be monitored) and an “‘active state register’ (this indicates
whether a high level, ‘1°, or a low level, ‘@, is the active state) RTMON will be called by the operatmg system if a
bit is not masked out and has reached its alarm state.

These memory locations are illustrated in Fig. 20 as a map

PIA Input 4 Mask ' . Active State

Register Register Register -
Decimal Bits Decimal Bits Decimal Bits
Location Location : Location .
1) 7) 7 9

50948 230 ' 9392°

50949 231 9393

50950 232 9394

50951 _ 233 9395

50952 ' 234 | 9396

50953 ' 235 9397

50954 236 | | I 9398

50955 237 9399

50956 | | : 238 9400

50957 ' : 239 9401

50958 249 : 9402

50959 | oa | [9403
A @ bit implies “‘ignore . A P bit means look for
the corresponding line.” ~a P (low) as the active
A 1 bit implies ‘‘watch the state in the corresponding
corresponding line.” PIA input register.

Also, see example
for additional restrictions.

. Fig. 20 RTMON Memory Location

Ignore a brt in the PIA data registers ‘when the corresponding bit in the mask registerisa . If the mask reglster bit
is set to 1, then the corresponding PIA data register bit is examined.

If a bit from a PIA register (data or control register) is to be ignored (by placing a @ in the corresponding bit posi--
tion in the mask register), then, a 1 must be placed in the corresponding position of the active state register.

The choice of which registers are to be scanned is made by POKEing (placing) the address of the first register to
be scanned in 8999 and 8919. The lower half of the address (low byte) is POKEd in 8999 (22CD hex) and the upper
half of the address (high byte) is POKEd in 8919 decimal (22CE hex). Place the number of registers to be scanned
(minus one) in location 8992 decimal (22C6 hex).

For example, to examine bit 6 of the PIA port at location 50948 decimal (C704 hex), place the bit pattern #1090
P0PP (64 decimal) into the mask register at 230 decimal. (E6 hex). This will force the ignoring of all but bit 6. The
corresponding active state register at 9392 decimal (24B@ hex) should contain_the bit pattern 1911 -1111 (183

70

—

decimal, B7 hex) in order for a @ to indicate the active state: If a 1 is to be the bit 6 actlve state then the bll pattern
should be 1111 1111 (255 decimal, FF hex).

If all 8 bits of a mask register are zero (ignore all data bits) then no special value need be placed in the active state
register since it will be totally ignored.

Though examination of the control registers for each port is probably not wanted or needed this ability is pro-
vided (it is possible to examine the interrupt lines of the PIA, for example).

If it is not specified which set of PIA ports to scan, the operating system will choose 50948 decimal (C7¢4 hex) as
the starting value. This is the choice of the CA-12 option PIA’s.

A GREENHOUSE EXAMPLE

The following is an AC control example which monitors a home greenhouse. While enjoying normal use of the
computer, it is desired that a low temperature alarm be available ‘‘in the background.” If the temperature should
drop below a preset value, the operator is to be informed of the event. Additionally, it is considered advantageous to
have an hourly signal sent to the greenhouse to spray the plants.

Both timer and alarm tasks are well suited to the C4P system. These tasks are performed by the real time monitor,
RTMON. :

A circuit which will accomplish the alarm function is drawn in Fig 21.

1

16
15
14
13
12
n
10
9 J—:GROUND

O~NOO PN =

J3 (OF FIGURE 1)
Fig. 21 Temperature Alarm

The other available connector pinouts are shown in the appendix. The selected circuit grounds the PIA input PA3
at address 63232 decimal (F700 hex). When the temperature triggers the alarm, a bimetallic thermostat connection
opens and the PIA goes to a high state (due to its internal power connections). .

A 1 microfarad capacitor in the alarm circuit minimizes noise pickup, while the 1K ohm resistor minimizes noise
currents picked up on the long wires leading to the greenhouse. Tw:sted pair shielded wire, though more costly than
unshielded wire, is advised for extended applications.

No warranty or liability by use of this (or other) user circuit is to be inferred. Good practice is encouraged.

Now to break the software part of this problem into smaller pieces. First, the hourly timer in the main program
should be set to get started. Also, the PIA addresses and masks which the real time monitor will scan need to be set
up.

Once initialized, the 3.1 HC will scan the timer and the PIA line control to the alarm circuit. When the timer runs
down to zero, the monitor will reset the timer. Also, if the temperature alarm has been tripped, the monitor will
react. In either case, alarm or timer, the monitor, RTMON, will be reset before leaving the RTMON program.

Because the program RTMON is resident on disk and is brought into the user’s work space at the alarm or timer
run out time, the current contents of the work space will be destroyed. If any data must be retained, they must be
stored periodically on a file on disk. If these data are needed, this provision to save them should be made. Generally,
this loss of data or running program is not considered to be a problem, as returning the work space to BASIC with
the BEXEC* program would place the user in command of all the computer’s resources. The previously running
program could be called again with only slight inconvenience. :

To use RTMON, it is necessary to have a main program and the real time monitor, RTMON. The main program
(or possibly the program BEXEC*) will initialize and activate RTMON. The main program will be the normally
operating program. Only when an event (timer times out or PIA line is alarmed) occurs will RTMON come into
play. Otherwise, operation of RTMON is transparent to the user. - '

In this example, RTMON will interrupt the operation of the main program when the greenhouse needs help. The
causes for a request for help are (a) the temperature exceeds a preset value on a thermostat or (b) the hour between

71

waterings is up, and the sprinkler must be turned on.
In the blocks are the programs

MAIN @

SET TIMER
SET SCREEN
AND SOUND
: SEND
SET : SIGNAL TO
RTMON WATER PLANTS
ACTIVE

' RESET
RTMON

RETURN

Fig. 22 Flow Chart (RTMON to Water Plants) -

LISTING OF RTMON PROGRAM

19 REM RTMON PROGRAM FOR GREENHOUSE
20 IF PEEK(223) =@ THEN GOTO 1000
25 REM CHECK IF TIMER AT ONE HOUR ELAPSED?
30 IF PEEK(9392) < 247 THEN GOTO 209
35 REM 247 IS NON-ALARM STATE |
209 REM SOUND TONE ALARM AND PRINT ALARM
219 PRINT“TEMPERATURE ALARM”
215 PRINT PEEK(9392)
22p POKE 57089, INT(49152/440)
23p REM TONE IS IN HEARING RANGE
249 FOR T=1 TO 5@@:NEXT T: REM DELAY LOOP
250 POKE 57089,1 ‘REM TURN OFF ALARM
~ 25p POKE 222,1:REM ENABLE RTMON
279 PRINT“IT WAS TEMPERATURE":GOTO 1099
1909 REM NEED TO ACTIVATE SPRAYER
1919 REM TO WATER PLANTS. USE A

72

SCAN
‘PIA FOR
ALARM

PRINT
MESSAGE

RESET
RTMON

RETURN

1920 REM SINGLE PULSE FOR THIS DEVICE.
1925 POKE 223,0:REM MAKE SURE TIMER OFF
1039 POKE 224,1:REM RESET HOURS

1949 POKE 2250:REM RESET MIN

1059 POKE 225,0:REM RESET SECONDS

1955 PRINT “TIMER TEST”

1959 POKE 2231 :REM SET TIMER

1970 POKE 222,1 :REM ENABLE RTMON

1989 PRINT“AT END WE ENABLE RTMON"
1099 END- -

LISTING OF MAIN PROGRAM

19 REM MAIN PROGRAM TO SET UP GREENHOUSE

20 REM

30 POKE 223,0;REM DISABLE TI'MER

49 POKE 224,1:REM SET HOURS TO 1

50 POKE 2250:REM MINUTES AT @

60 POKE 225,0:REM SECONDS AT @

65 REM WATER EVERY HOUR

70 POKE 223,1:REM ACTIVATE TIMER

80 POKE 56832,7:REM TURN ON SOUND AND COLOR

81 REM SETUP PIA

82 POKE 632330

83 POKE 63232,0:REM LOOK FOR INPUTS

84 POKE 63233,4:REM REVERT TO DATA HANDLING

90 POKE 8909,0:REM ADDRESS OF PIA
109 POKE 8910,247:REM ADDRESS OF PIA
119 POKE 8902,0:REM LOOK AT FIRST REG, PORT A ONLY
120 POKE 230,8:REM MASKS 0000 19099 FOR LOOK AT BIT 3
130 POKE 9392,247:REM MASKS 1111 9111 FOR BIT 4
135 REM 247 DECIMAL IS F7 HEX. SELECT F700 PIA. '
149 REM ACTIVE LOW
150 POKE 222,1:REM ENABLE RTMON
160 PRINT “ENABLE RTMON IN MAIN"
17¢ END

For this example, a short 440 hertz tone pulse is generated to alert the user. The remark, statement 1920, might
be replaced with ACTL commands to turn on and off a watering fixture or an output toaPIA to create a pulse. The
choice would depend on the watering device characteristics.

The overall flow chart (Fig. 22) is adequate to follow the detailed program listing. '

73

If the user wished a more detailed response to the aIarms mmor ‘modifications within: the program framework
would achieve these actions.)

If the user wishes to try these programs, files to store “MAIN” hnd “RTMON” should be created Then, these
programs could be retained for future use on disk. S :

RTMON would be stored (after being typed in) by

DISK!"PU RTMON"

and the main program (after typing in) by
DISK!"PU MAIN"

The program would be initiated after receiving control of the. computer.from: BEXEC* by entering
RUN“MAIN" '

Reference to BEXEC* will be found in Appendlx P.

74

e

i

APPENDIX A
TROUBLESHOOTING

If any difficulty in procedures in this manual is encountered, first refer to the following troubleshooting guides. If
they do not provide sufficient help for resolution of the problems, proceed to the end of this section. -

1. Order does not seem complete. First check to see that all packages speciﬁed have arrived. Carefully look over
the packing lists, manuals, and this manual to determine what is supposed to be present in your system. If you
have further doubts, check with the dealer or representatlve from whom you purchased your system

2. Unit(s) mechanically damaged in shipment. Report damages or losses immediately to carrier. All units are
' shipped by Ohio Scientific fully insured. Under no circumstances should you ship the unit back in such condi-
tion as it would then be impossible to determine where the unit was damaged. This can cause a long drawn-

out dispute with the carrier especially if the unit was transported by different carriers. '

3. User has difficulty in following manual because of high level of technology involved. Suggestions: obtain assistance
from local Ohio Scientific dealer or representative. If you ordered factory direct, or are at a considerable dis-
tance from the dealer, contact your local hobby club and see if any members can assist you. Hobby club mem-
bers are generally very willing to help out, which is a major reason they are in the club. Current club activities
are listed in BYTE, Kilobaud Microcomputing and Interface Age. Any local computer store should be able to
assist you in becoming a computer club member.

4. Unit does not power-up. Carefully check power connections. Check to see if unit is plugged in, that the power
switch is on and that power is present at the power outlet. If so, turn the unit off and unplug it. Check the 2
amp fuse at the back of the unit.

5. Unit does not respond properly to keyboard. Verify that shift lock key is down.

6. Problems remain after checking with the above procedures. Carefully inspect the PC board portion of the com-
puter for foreign matter such as a wire cutting or something leading out from the PC board. Also check to see
that all PC boards are properly seated, and that any ribbon cables are properly seated in their sockets. If the
unit light is only dimly lit, remove about half of the PC boards. If the light comes up to full brightness with
these out, put those boards back in and pull the other ones out. If the same condition occurs, it means that
there is a power supply malfunction and that the unit will have to be returned for repair. If the power supply
folds back when some PC boards are out, and not with others, you should be able to isolate the board causing
the foldback. That board most likely has foreign matter across it, causing the short on the board.

7. Power supplies look fine, but computer does not seem to reset at all or properly. Symptoms: nothing comes out on
serial terminal or screen doesn’t clear on video system. Solution: again, give the system a careful visual in-
spection. At this point, it would be invaluable to have access to another Ohio Scientific computer system by
way of a dealer or another computerist. If neither is available, and you do not wish to or are not able to attach
the actual circuitry of the system, it will most likely be necessary to return the unit for repair.

8. System works fine in machine code, but in BASIC consistently sends SN error message (Syntax error). Carefully
refer to the example given in the BASIC User’s Manual.

IN CASE OF DIFFICULTY

If you encounter a problem with your system, first carefully look over the trouble-shooting hints in your proce-
dures. The great majority of problems encountered on new computers result simply from the user’s unfamiliarity
with the computer system. If you decide that you cannot resolve the problem yourself, contact the representative or
dealer from whom you purchased the computer. Your local OSI dealer/representative should be able to help you by
providing guidance on operating procedures, and in the case of an actual computer malfunction, should be able to
substitute PC boards and subassemblies to isolate the problem. He should then also provide the service of getting
the replacement or repair for the malfunctioning unit. '

75

COLOR TUNING (HETERODYNING ADJUSTMENT)

If color has been selected and does not appear or if a ‘‘barber pole” effect is seen at color boundaries, a simple
operator adjustment will correct these problems.

The C4P w1th color option has crystal oscillators to set the rate of display of the image and the color information.
A shaft on a potentiometer (see Figure 1) provides adjustment of the relative rates of these oscillators. Normally,
adjustment is made after the circuits have warmed up for half an hour. Additional adjustment should not be neces-

sary once the computer has warmed up.

THE _M_ACHINE ORGAN‘ZATION

The high density and modularity of the C4P system is defined by the board structure.

TOP

MOTHER BOARD

549 BOARD
VIDEO

ol —/

(" 527 BOARD
24K BYTES
MEMORY

T, /OPTION BOARD /
(EXTRA MEMORY./”
VOTRAX,. . . .)
505 BOARD
cPU

/
/
£
| o
|
)

POWER
SUPPLIES (2)

/
/

A15
CONNECTOR
BOARD

542 BOARD
KEYBOARD

Fig. 23 Board Layoul

76

This system permits economical extension of systems as computing demands increase.

DETAILED A-15 BOARD PIN CONNECTIONS
The connectors shown on the A-15 board have the pin connections detailed in Fig. 24. Reference to schematic
information accompanying equipment is advised if more extensive use than the manual examples is anticipated.

Nomenclature is specified in the schematic diagrams. This listing:is intended to provide pin outs of the PIA’s and
the printer/modem in support of the manual examples, only.

- J2 OSt 110 BUS - a1 J8 SERIAL PRINTER

1000 ~22. L wio0p R$2320UT-2 ———o—a—+ RS 232 0UT
10D1 =22 2~ 1001 ' a7 ~~—=—= RS 232 OUT
- 1002 -2 131002 cTs ——o—=-CTS
1003 22 121003 ~~—tlecTs
10D4 =22 151004 Ro - - === PULLUP
1005 =22 L1005 . o—MA—a—d--——oZ = PULLUP
1006 ——= ~—g— 1006 _ e r‘?—>GND
10D7 =22 —>i007 SEE NoTe 2 !
:8:? gg g l'g:? BeLOW J9 MODEM .
JORM =2 S 10RW " 2 '
I0B2VMA =72 S—= 1002:VMA 2 L2 ~Rs 22007
LA2 = 5 LA2 RS 232 IN 5 RS 232IN
LA3 o5 LA DCD ~=— S5+ 0CO
+6V o— 8- vCC ATS o =2 »RTS
r" GND °"—1'0—"TX CLK
! % o—2 + RX CLK
CTSM = <z-o—3—CTSM
GND
Jt J3 PORT A J'
PAD 3‘2 I . PAD
PAI 2 . pat1 g
3 3 Jn J5 JOYSTICK "A
PAZ 2 2~ pa R .
PAY -2 = PA3 R7 > 5
Pa¢ T34 S Pa4) 2
PAS 22— S+ Pas c1 y
PAS =20 ‘ L PAs e
PA7 e PA7 ——2
E [e S |l
200 1vP 19l £ 3 L 2~ ano)
& 2 '£m+5‘;8: v | dsovSTIOK B
‘P P
T I e s =
B 15 \rRuDER i3
wh2 16 pige 4
o |1 amxaTve 5
PR £ % S | e)
r Sl e
l Jit J7 KEYPAD “A"
J < Ja PORT B A4S .
9 1 7 F
PBD - > PBD R3-=—7
PBI 2 pai R2——3 2
PB2 2 = PB2 R1 = 2
PB3 -0 = PB3 CT=—z 2
PB4 s =— PB4 C5~—g < S
PBS > 2 P85 c6 -
PBS 2= T— P86
PB7 =T 16 g~ PB7 JIDKEYPAD “B"
« GND -2 2— GND .
e —“—> GND T»
+ o GNp L2 .
o1k L 12 _ eho L3 .
= 50.F 22 vee m :
C23F 014 e VCC a1 :
+ T e vee G2~ 5
+5Vo- VvCC c3 -

NOTES: 1. All unused pins on J8 + J8 are connected. to pads.
2 Install R9 and jumpers only for special printer.

Fig. 24 A-15 Board Pin Connections

77

APPENDIX C
MEMORY MAP (RAM)

Within a computer, different programs and programmers will lay claim to memory locations. Though these loca-
tions are not needed by all programs, prudence encourages the making of a list of all the locations known to have
been committed to different operating systems and utility programs. If use of these locations is avoided the risk of a
program’s failing for unexplained reasons is minimized. The reason is generally that a value needed by a system pro-
gram was found destroyed by a user program.

Also, knowing the reserved locations allows the taking advantage of these locations. For example, the memory
which is dedicated to screen display could be used as extra storage (though it'messes up the display by doing this).
‘(Also, values off the screen can be read by looking into the memory location corresponding to the screen position.)

‘Though programming can be accompllshed well without needing this map, the precedmg Justnﬁcatlon merits this
llst :

C4P MEMORY

Decimal Hexadecimal
Location Location Use
gggfg ' ggg?: } 6502 Page Zero
0256 0109 } ' 6502 Stack
@511 @1FF (Page 1)
p512 0209 } Transient program area for user’s language processor
8959 22FF ‘
8960 2309 } /0 Handlers
., 9819 . 2658
9829 265€ } Floppy Drivers
10826 2A4A .
19827 "2A4B } - Disk Operating System (DOS)
11896 2E78
11897 2E79 } Page @1/1 Swap Buffer
12664 3178
12665 3179 } DOS Extensions
12920 3278 :
12921 3279 } Source file header information
12925 327D
12926 327E } Source File
TO END OF MEMORY '

78

v ———,

R

MINI-FLOPPY DISK ORGANIZATION

It is useful to know how information is placed on the disk, in order to plan efficient use of the disk.

Each mini-floppy is organized into 4@ tracks, numbered from @ through 39. Track @ is near the outside edge of the
disk while track 39 is close to the center. All tracks are circular tracks snmllar to the tracks on a photograph record.
See the diagram below.

Each track may be subdivided into sections and pages. A page is a block of 256 bytes while a sector must be an
integer multiple of pages (up to 8 pages, of course). BASIC programs are limited to -integral multiples of tracks
(2tracks, not 1-1/2 pages) but machine code progams may be in sectors of variable page lengths. Several machine
code routines (of various or similar sizes) may be saved on one track in this manner.

For example, the disk directory found elsewhere in this section shows that tracks 6, 9, 11 and 12 contain various
combinations of machine code programs in segments. Specifically, track 12 has four one page sectors. Oné should
note that the BASIC program BEXEC* on track 14 comprises one 8 page sector.

OSI software utilizes single sided, single density soft-sectored disks. Soft-sectored disks have one index hole
which provides a timing reference for hardware purposes.

When information is stored on the disk, it is good practice to assign the file of information a ‘‘file name.”” File
names are constrained to 6 or fewer characters, the first character being a letter.

Certain tracks are dedicated to the disk operating system, as shown in the table below.

TRACK USE

) DOS-part 1

1 DOS-part 2

2-6 9-1/2 Digit BASIC

7-9 Assembler/Editor (ASM)
10-11 Extended Monitor (EM)

12 Sector 1—Directory Page 1
S 12 Sector 2—Directory Page 2

12 Sector 3—BASIC Overlays

12 Sector 4—GET/PUT Overlays

13 COPIER/TRACK® Utility
14-39 User and/or utility programs

When a new disk is placed in operation, it is initiated to place timing marks on the disk and check disk quality. To
clean a file of a disk which is in service (in contrast to cleaning the entire disk), the “ZEROQ’’ program is utilized.

The disk directory, the entries into which are made by the CREATE program, does the bookkeeping of placing
file names into the directory. By keeping the directory up to date, efficient use of this bulk storage medium can be
enjoyed. .

79

MINI-FLOPPY 5-1/4 INCH DISK
Sector RN Length
or Start of in Go
Program Track Format Transfer Pages Address | Comments
0S-65D V3 Part | [] 1 2200 8 . Ist page overlaid by T6 & T11
0S-65D V3 Part 11 1 1 2A00 8 (T means track)
BASIC Part | 2 1 0200 8
BASIC Part 11 3 1 PAGD 8
BASIC Part Il 4 1 1200 8
BASIC Part IV 5 1 TAD] 20C4-21C3 overlaid by T 12,3
BASIC Part V 6 1 2200 1
Assembler Part | 7 1 0200 8
Assembler Part [] 8 1 OAPD - 8
Assembler Part 11 9 1 1200 5
EM Part [19 1 1709 8
EM Part 11 11 1 1FpQ 4
Directory Page | 12 1 2E79 1 Overlaidby T 12, 4on OPEN |
Directory Page 11 12 2 2E79 1 Overlaid by T 12, 4 on OPEN
BASIC Overlays 12 3 20C4 1)
PUT/GET Overlay 12 4 . 2E79 1
COPIER/TRACK @ Utility 13 1 . 9200 5
BEXEC* .14 1 327F 8 .
COMPAR 39 1 7209 5 P200 Not present on all disks
2 2000 2 j
N\
80

,, APPENDlX D
DISK BASIC STATEMENTS AND ERROR LISTINGS

DISK BASIC: STATEMENTS

~ In the following examples V or W is a numeric variable, X is a numeric expression, X$isa slrmg express10n Iorl

is a truncated integer. See OSI’s BASIC Reference manual for more detail. L
NAME EXAMPLE COMMENTS
INPUT 10 INPUT A Variable A will be accepted from the
' terminal. A carriage return will terminate
input. .
DEF ' 19 DEF FNA (V)=V*B ‘ User defined function of one argumem.-,
DIM . 11(5 DIM A (12) - Allocates space for Matrices and sets all

matrix variables to zero. Non-dimensioned .
variables default to 1. :

END 999 END Terminates program (optional).
FORNEXT 10 FOR X=.1 to 19 STEP.1 STEP is needed only if X is not
20 incremented by 1. NEXT X is needed
30 NEXT X only if FOR NEXT loops are nested, if

not, NEXT alone can be used (variables
and functions can be used in FOR

statements).
GOTO 50 GOTO 100 JUMPS to line 109
GOSUB, RETURN 100 GOSUB 500 _ Goes to subroutine, RETURN goes back
500. ... to next line number after the GOSUB.
609 RETURN
IF...THEN 10 IF X=5 THEN 5 Standard IF-THEN conditional with the
10 IF X=5 THEN PRINT X option to do multiple statements.
10 IF X=5 THEN PRINT X:Y=2
IF...GOTO 10 IF X=5GOTO 5 ' Same as IF-THEN with line number.
ON...GOTO 109 ON | GOTO 10,20,30 . Computed GOTO

If I=1 then 10
If I=2 then 20
If I=3 then 3¢

DATA 10 DATA 1,37 Data for READ statements must be in
order to be read. Strings may be read in
DATA statements.

PRINT 10 PRINT X Prints value of expression. Standard
20 PRINT “Test’ , BASIC syntax with ,;’" formats.
READ 499 READ v.w Reads data consecutively from DATA

statements in program.

81

REM

RESTORE

STOP

DISK BASIC FUNCTIONS

FUNCTION
ABS (X)

INT (X)
RND (X)

SGN (X)

SIN (X)" .
oS (X).
TAN (X)
ATN (X)
SQR (X) -
TAB ()
USR (1)’
EXP (X)
FRE (X)
LOG (X)

POS (I)
SPC ()

STRINGS

~ This is an abbreviation of REMARKS, for
non-executed comments.

500 RESTORE ' Restores initial values of all data

Statements.

Stops program execution, reports a
o BREAK. Program can be restarted via
o . CONT. :

COMMENT

For X<=@'ABS(X) =X
For X<PABS(X) =—X

'INT (X) = largest integer less than X

RND (@) generates the same number always.

RND (X) with the same X always generates the same sequence of
random numbers .
NOTE:[(B—A)*RND (1)+ Algenerates a random number between B
and A.

If X>P then SGN(X) =1
If X=0 then SGN(X) =0
If X<@ then SGN(X)=-1

* Sine of X where X is in radians.

Same for COS, TAN, and ATN (ARC TAN).

- Square root of X.

Sbaces the print head I spaces.

' See 1/0 section

eAX where e=2.71828.
Gives number of Bytes left in the work space

Natural log of X. To obtain commion logs use Common
log(x) =LOG (x)/LOG(109).

Gives current location of terminal print head.

Prints I spaces, can only be used in print statements.

Strings can be from @ to 255 characters long. All string variables end in $, such as A$, B93$, and HELLOS.

DISK BASIC STRING FUNCTIONS

ASC (X$)
CHRS (1)

Returns ASCH value of first character in string X8.

Returns an I character string equivalent to the ASCII value above.

82

LEFTS (X8, ' . Gives left most I characters of string X$.

RIGHT$(X$,1) Gives right most I character of string X$
MID$ (X$,1,J) Gives string subset of string X$ étarting at Ith character for J
characters. If J is omitted, goes to end of string.
LEN (X$)) } Gives length of string in bytes.
STR$ (X) , Gives a string which is the character repfesentation of the numeric
expression of X.
Example X=3.1
X$=STRS$(X)
o X$=31" - A _
VAL (X$9) Returns string variable converted to number. Opposite of STR$(X).

DISK BASIC COMMANDS .

NAME EXAMPLE
LIST LIST

LIST 100—
NULL : NULL 3
RUN RUN

RUN 200
NEW _ NEW
CONT CONT
LOAD LOAD -

DISK BASIC OPERATORS

SYMBOL EXAMPLE
= A=10

LET B=1¢9
- . —B
<SHIFT N> XA4

83

COMMENTS
Lists program

Lists program from line 199 to end of
program. Control C stops program listing
at the end of current line.

" .Inserts 3 nulls at the start of each line to
- . eliminate carriage return bounce

problems. Null should be @ when entering
paper tapes from Teletype readers. When
punching tapes NULL = 3. Higher"
settings are required on faster mechanical ,
terminals.

Starts program execution at first line. All
variables are reset. Use an immediate °
GOTO to start execution at a desired line.

GOTO 20§ with variables reset.
Deletes current program.

Continues program after Control C or
STOP if the program has not been
modified. For instance a STOP followed
by manually printing out variables and
then a CONT is a useful procedure in
program debugging.

Used in cassette and Disk BASIC only.

COMMENTS

LET is optional

. Negation

X to the 4th power

NOT

" C=A'B
D=L/M

Z=L+M
J=2551-X

10 IF A<>B THEN 5
B>A

B<A

B<=A

B—<A

IF B>A AND A>C
THEN 7

IF B>A OR A>C
THEN 7

IF NOT B< >X
THEN 7

(CAD with C negative and D not an
integer gives an FC error.)

Multiplication

Division

Addition

Subtraction

Not Equal

B greater than A

B less than A

B less than or equal to A

B greater than or equal to A
If both expressions are true then.7.
If either expression is true then 7.

If BNOT =A then 7.

AND, OR, and NOT can also be used in Bit mampulatlon mode for performing Boolean operations of 16 bit 2s com-
plement numbers (—32768 to +32767)

EXAMPLES
EXPRESSIONS RESULT
63 AND 16 16
~1AND 8 8
40R2 6
1P OR 10 10
NOT @ —1
NOT 1 —2

OPERATOR EVALUATION RULES:

Math statements evaluated from left to right with * and / evaluated before
+ and —. Parentheses explicitly determine order of evaluation.

Precedence for evaluation

A

*/
+._

NOT
AND
. OR

AR o A

DISK BASIC—ERROR LISTING

Errors can arise in several contexts. Errors in the BASIC program will be indicated by a lwo letter mnemonic code.
The codes and their interpretations are:

Negation

By parentheses

=< > <> <= >=

84

ERROR CODE] ‘ MEANING .

BS v Bad Subscript: Matrix outside DIM statement range, etc.

DD | ‘ Double Dimension: Variable dimensioned twice. Remember subscripted
variables default to dimension 10. '

FC Function Call error:. Parameter passed to function out of range.

ID ' Illegal Direct: Input or DEFIN statements can not be used in direct
mode. :

NF NEXT without FOR:

oD Out of Data: More reads than DATA .

oM Out of Memory: Program too big or too many GOSUBs, FOR NEXT

. loops or variables.

ov Overflow: Result of .calculation too large for BASIC.

SN Syntax error: Type, etc.

RG RETURN without GOSUB.

us Undefined Statement: Attempt to jump to non-existent line number.

/0 Division by Zero A

CN) ' Continue-errors: Attempt to inappropriately continue from BREAK or

' STOP.

LS : Long String: String longer than 255 characters. o

(01 Out of String Space: Same as QM

ST String Temporaries: String expression too comﬁlexc

™ Type Mismatch: String variable mismatched to numeric variable.

UF Undefined Function. |

DOS ERROR MESSAGES

CODE MEANING

1 Cannot read sector (parity error)

Cannot write sector (reread error)

Track zero write protécted against that operation
Disk is write prbtected

Seek error (track header does not match track)
Drive not ready

Syntax error in command line

Bad track number

Cannot find track header within on'e‘rev of disk

Cannot find sector before one requested

W > © © N O O h W N

Bad sector length value

85

C Cannot find file name in directory

D _ Read/Write attempted past end of named file

CONVERTING OTHER BASICS TO RUN ON OSI 6502 BASIC

STRINGS
OTHER osl .
DIM A$ (1J) DIM AS$(J)
AS$ () ~ MID$ (A$,1,1)
A$ (1)) MID$ (AS,I,J—1+1)

Multiple assighments: B=C=0 must be rewritten as B=p:C=0. Some BASICS use \ to delimit multiple state-
ments per line. Use “‘:’. Some BASICS have MAT (Matrix Operation) functions which will have to be rewritten
with FOR NEXT loops.

4

BASIC ERROR CODES

CODE DEFINITION
DD D _..r" Double Dimension: Variable dimensioned twice. Remem-
ber subscripted variables default to dimension 10.

.FC F ¥ Function Call error: Parameter passed to function out of
range.

ID | _...-l' lilegal Direct: Input or DEFIN statements can not be used
in direct mode.

'NF N ™Sy NEXT without FOR:
oD O _g#™ Out of Data: More reads than DATA
Out of Memory: Program too big or too many GOSUBs,

OM -0 -|
FOR NEXT loops or variables

ov 0] i Overflow: Result of calculation too large for BASIC.

SN S o Snytax error: Typo, etc.

RG R 'llI RETURN without GOSUB

uUsS 8] . I Undefined Statement: Attempt to jump to non-existent
line number

/0 / " Division by Zero

CN C _| Continue errors: attempt to inappropriately continue from

. BREAK or STOP

LS L h Long String: String longer than 255 characters

OS (6] h Out of String Space: Same as OM

ST S h Striné Temporaries: String expression too cdmplex.

™ T '1 Type Mismatch: String variable mismatched to numeric
variable

UF U ™Say_ Undefined Function

86

APPENDIX E
POKE AND PEEK LIST

The following features of OSI BASIC are useful for several applications. The user should be extremely careful
with these statements and functions since they manipulate the memory of the computer directly. An improper
operation with any of these commands can cause a system crash, wiping out BASIC and the user’s program.

STATEMENT/FUNCTION COMMENT

PEEK (1) Returns the decimal value of the specified memory or I/0 location.
(Decimal)
Example: X=PEEK (741)
Checks to see if LIST is enabled (76 indicates that it is enabled)

POKE I.J Loads memory location I (decimal) with J (decimal). I must be
between @ and 65536 and J must be between @ and 255. Example: 19
POKE 64256, 255 loads FB@@ with FF (hex).

USEFUL BASIC POKEs

As systems develop, different locations are committed to hold parameters. Many of these parameters have been
mentioned in the text material. These parameters are collected here, along with some other useful parameters
which may be needed by an advanced programmer. Some parameters appear several times, since they are relabeled
by other utility programs.

Caution, care must be taken when POKEing any of these locations to avoid system errors and subsequent soft-
ware losses.

LOCATION ’ NORMAL
' DECIMAL HEX CONTENTS USE

23 17 132) Terminal width (number of printer characters per line). The
default value is 132. Note, this is not to be confused with
the video display width (64 characters).

24 18 112 Number of characters in BASIC s 14 character fields (112
characters = 8 fields) when outputtmg variables separated by
commas.

120 78 127 Lo-Hi byte address of the-‘beginning of

121 79 50 "BASIC work space (note 127=3$7F, 50=832).

132 84 * Lo-Hi byte address of the end of the

133 85 * BASIC work.space. (*contents vary according to memory size
such as 255(8FF) and 95($5F) or $5FFF=24575 for 24K)

222 DE o . Location to enable or disable RTMON (real time monitor). 1

: ‘enables and @ disables RTMON.

223 DF (1} Location to start count down timer. A 1 starts the timer, and
a @ stops it.

224 EQ [} Contains the n‘ﬁmber of h_oﬁrs for timer to count down.

225 E1 - ()} Contains the number of minutes to count down.

226 E2)] Contains the number of seconds to count down.

87

LOCATION

' DECIMAL HEX
23p-241 E6-F1
249 F9
548 224
549 225
741 2E5
750 2EE
1797 705
2073 819
2209 898
2888 B48
2893 B4D
2894 B4E
2972 BSC
2076 BAD
8708 2004
8722 2212
8902 22C6
8917 22D5
8954 20FA
8960 2300

NORMAL
CONTENTS

9

10

10

32

173

27

55
08

58 -

41
27
o0

USE

Identifies the I/0 masks used for external polling of AC
events, i.e. determines which PIA lines are scanned.

Should contain the latest value at 56832 ($DE@@) which is a
“write only”’ register. This location does not change the
display format but acts to maintain the format during ACTL
use.

Hi-Lo byte address fbr AC driver; with no buffers these

locations (with AC enabled) will contain $327F

Control location for “‘LIST’’. Enable with a 76, disable with

- al@.
.Control location for “NEW.”’ Enable with a 78, disable with

alﬂ

Controls line number listing of BASIC programs, enable w1th
a 32, defeat with a 44.

“CONTROL C” termination of BASIC prograrﬁs. Enable
with 173, disable with 96.

The monitor ROM directs Track @ to load here at $2200.

A 27 present here allows any null input (carriage return

‘only) to force into immediate jumping out of the program. .

Disable this with a §. Location 8722 must also be set to @.

Alternate “‘break on null input”’ enable/disable location.
A null input will produce a “‘REDO FROM START”
message when 2893 and 2894 are POKEd with 28 and 11
respectively.

Normally a comma is a string input termination. This may be
disabled with a 13 (see 2976).

A colon is also a strong input terminator, this is disabled
with a 13 (see 2972).

Output flag for peripheral devices (see peripheral section).

Null input if=09, normal input if = 27.

Determines which registers (less 1) RTMON scans (see the
AC control section.) :

USR(X) Disk Operation Code:
@-write to Drive A
~ 3-read from Drive A
6-write to Drive B
9-read from Drive B

Location of JSR to a USR function. Preset to JSR $22D4,
i.e., set up for USR(X) Disk Operation.

Has page number of highest RAM location found on OS-
65D’s cold start boot in. This is the default high memory

"address for the assembler and BASIC.

88

NORMAL
CONTENTS

7D
3E

USE
[/0 Distributor INPUT flag
1/0 Distributor QUTPUT flag

" Index to current ACIA on 550 board. If numbered from 1 to

15 the value POKEd here is a 2 times the ACIA number.

Location of a random number seed. This location is
constantly incremented during keyboard polling.

Pointer to Disk Buffer (Usually $3E7D)

First Track Disk 1

Last Track Disk 1

Current Track in Buffer 1
Buffer 1 Dirty Flag (Clear=0)

Locations 9986 to 9913 Pertain To Disk 2

LOCATION
DECIMAL HEX
8993 2321
8994 2322
8995 2323
8996 2324
o000 2328
9p01 2329
0pp2 - 232A
9pP3 232B
9pp4 232C
0005 232D
9006 232E
o007 232F
9008 2330
9009 2331
P10 2332
o911 2333
9912 2334
9013 2335
9098 238A
9p99 2388
9105 2391
9106 2392
9132 23AC
9133 23AB
9155 23C3
9156 23C4
9213 23FD
9214 23FE
9238 2416
9239 2417
9368 2498
9392 24B9
9403 24BB
9480 2508
9481 2509

7E
3A

7E
42

7E
32

7E
32

7E
3E

7E
3E

Pointer tb Disk 2 Buffer Start

" This area used for Disk 2 data transfer operations. (Usually

$3A7E)
Pointer to Disk 2 Buffer End (Usually $427E)

First Track Disk 2

Last Track Disk 2

Current Track in Buffer 2
Buffer 2 Dirty Flag (Clean=0)

Pointer to Memory Storage Input (Lo and Hi Byte).
Memory is dedicated for use as file.

Pointer to Memory Storage Output (Lo and Hi Byte). Use
of memory as a file. .

Disk Buffer 1 Input Current Address (Lo and Hi Byte)
Default value is $327E. :

Disk Buffer 1 Output Current Address (Lo and Hi Byte)
Default Value is $327E '

Disk Buffer 2 Input Current Address (Lo and Hi Byte)
Default value is $3E7E

Disk Buffer 2 Output Current Address (Lo and Hi Byte)
Default value is $3E7E

Indirect File Input Address (Hi Byte) (Lo=0@)
1/0 Status used by ACTRL. See AC control section.

. Real Time Clock, Hours (HC Systems only)

Real Time Clock, Minutes (HC Systems only)

89

LOCATION

DECIMAL HEX
9482 25QA
9483 2508
9543 2547
9554 2552
9666 25C2
9667 25C3
9680 23D0
9682 25D2
9683 25D3
9770 262A
9796 2644
9822 265D
9823 265F
9824 2660
9825 2661
9826 2662
9976 - 26F8
10950 2AC6
11511 2CF7
12042 2FPA
12921 3279
12922 327A
12925 327D
12926 327E
15997 3E7D
' 15998 3E7E
. 19069 '4A7D
50944 C700
50948 C704
to
50959 C70E

NORMAL
CONTENTS

215

95

64

to

USE

Real Time Clock, Seconds (HC Systems only)
Real Time Clock, Days (HC Systems only)

Content is hex OS Entry Point. Under Machine Monitor
Load 2547, then “GO”. '

Pointer to Indirect File (Hi Byte only) for output (Lo=09)

When POKEd with N (#-63) and a LIST command is given,
this will move the left hand margin to the right N spaces
(dashes will echo on the left uniess the cursor is removed).

When POKEd with N (207-215) and a LIST command is
given, this will move the scroll up 4* (215-N) lines.

Cursor symbol character designation, for video screen.

Next Position for Cursor on video screen

Display control parameters. Single Space = 64; Double
Space=128 Quad Space=255; Two columns=32.

Entry point to Keyboard Swap Routine
Sector for USR(X) on disk -
Page Count for USR(X) Disk. Read or Write.

Pointer to memory for USR(X). (Lo and Hi Bytes) USR(X)
will reside in location pointed to.

Contains track number for USR(X) on disk

Disable ““:>> Terminator. See Location 2976 comments.
Console terminal number. Video terminal is 2.

Used by Disk Page #/1 Swap Used by Random Access File

Calculation routines to set record size.

Start of work space header.

If contains 32, then have no buffers
If contains 3A, then have 1 buffer:
If contains 42, then have 2 buffers

Number of tracks to load from disk.

"Disk 1 Buffer Start

Disk 1 Buffer End
Disk 2 Buffer Start

.Disk 2 Buffer End

OSI BUS PIA

PIA register’s location. See PIA section
for use.

90

LOCATION
DECIMAL HEX
53248 DOPD

to
55295 'D7FF ~
57344 EQQD

to
59391 | E7FF
56832 DEQQ
57088 DFQQ
57089 DFQ1
63232 F700
64512 FCO

NORMAL
CONTENTS

to

to

USE
Video screen memory storage. Video

screen memory is 8 bit (1 byte) storage
locations.

Video color image storage. Only 4 bits are
available for use. ‘ :

. Screen Format (64 X 32 characters, or 32 X 32), sound, »

color selected. See video section for POKEs.
Joystick A,B; Also Tone; Also Polled Keyboard location.

D/A Converter Port. (Also frequency divider rate) This
tocation can only be POKEd. See tone generation section.

PIA Port address. Home security devices share this location
with normal PIA lines.

ACIA Port address. Printer and modem share this Iocatfon.

91

_APPENDIX F

- PIANO KEYBOARD

FREQUENCY IN HERTZ

The kéyboard, with its musical scale notation, may be useful in programming tunes on the tone generator or DAC
feature of the C-4P. A quarter note is approximately 0.2 seconds in duration.

34.7
389

465
519

69.3
778

925

1165

1386
155.6

1850
207.7
2331

L2172
311.1

3700
"4163
466.2

554:4
6223

7400
9323
1108.7

12445

14800
1661.2
1864.6

2217.5
24899

2959.9
33224
37203

44349
4978.0

59199
6644.9
74586

327

36.7

41.2

437

- 490

E___L

550
61.7

o

87.3

98.0

1160

1235

1308

1468

164.8

1746

196.0

2200

2489

261.6 Middle C

2937

3296

349.2

3920

4480

4939

523.2

‘ 65.4
73.4
824
s Nm——
me—
—
.

5873

659.2

6984

7830

880.0

987.8

1046.5
11747

13185

13959

1568.0

E— T
1975.6

Fig. 26 Keyboard

92

R v

LA

APPENDIX G
DISK UTILITY PROGRAMS

Some commonly used disk utility programs are provided, and their descriptions follow below. A more detailed
description of these utilities is found in the OS 65D User’s Manual. Utility programs serve a housekeeping service,

maintaining disk files in order and permitting update of these files.
The first utility used, when a file is no longer needed or room must be made on the dISk for a new file, is the

DELETE utility.

DELETE UTILITY
The DELETE utility is invoked by
RUN"DELETE” <RETURN>
As in any utility where the risk exists of deleting valuable programs or data, the utility program requires
PASSWORD? ‘ ‘
to which the user-responds’
~ PASS <RETURN>
The utility then requests the name of the ﬁle to be deleted as
FILE NAME?

the response to which is to name the file to be deleted. Upon deletion, the file name will be missing from the direc-
tory. When a file is DELETEd, only the name is removed. The program or data which resided on disk will still be
present. To erase the data which is present in a file, invoke the ZERO utility.

RENAME UTILITY

For convenience, it is sometimes desired to change file names. The directory entry for file name can be changed
by ’ -

RUN“RENAME” <RETURN>

The utility requests the '
OLD NAME? .

Respond with the existing file name to be changed. The program responds .
RENAME OLD NAME TO?

Type the new file name as the response. File names may be 1 to 6 characters, with the first character a letter.
Upon completion of the RENAME utility, the user is returned to BASIC.

CHANGE, THE UTILITY FOR WORK SPACE AND INPUT/OUTPUT
CHANGE

The CHANGE utility services Input/Qutput parameter changes. The normal (default) value for printer width is
132 spaces. These are the printable characters, which get padded by blanks at output. Carriage return and line feed
are-automatically added beyond these 132 spaces. Additionally, the number of printer fields (the number of varia-

_bles which can be printed across a page) has a default value of 8, one less than the number of whole 14 character col-

umns that will fit within 132 printable characters Any change in printer width will change the number of printer

- fields accordmgly

93

. To invoke the CHANGE utility, type
RUN“CHANGE"” <RETURN>

The program output and the kind of input possible to enter in response are shown below. Any unacceptable
response will result in an error message and/or a repeat of the request for input.

CHANGE PARAMETER UTILITY
THE TERMINAL WIDTH IS SET FOR 132°
DO YOU WANT TO CHANGE IT (Y/N)?
Enter YES or NO. If YES is entered, the program requests a new value for the terminal width.
NEW VALUE?

Enter a new value from 14 through 255.

The next option to change is available memory. Since the default value is the maximum memory available, any
change will reduce the memory available for BASIC or ASSEMBLER use. By denying memory allocation to BASIC
and ASSEMBLER, room may be reserved for machine language programs.

The CHANGE utility, after the prior Input/Qutput changes, will reply: ‘

BASIC & ASSEMBLER USE xx K WORK SPACES (yyy PAGES)
WOULD YOU LIKE TO CHANGE THIS (Y/N)?

The work space is the main memory available to the system software. Each K (1024 bytes) contains four 256 byte
pages. A change to this parameter will make a portion of highest memory unavailable to systems software. Note that
such memory will not be included within LOAD/PUT files.

Enter YES or NO. If YES is entered, the program requests the number of pages to be used by system software.

HOW MANY PAGES SHOULD THEY USE?
Enter a number of pages from 5@ through 191. The program continues with:
CHANGE BASIC’'S WORK SPACE LIMITS (Y/N)? (
Enter YES or NO. If NO is entered, the program terminates. If YES is entered, the program requests the following:
* HOW MANY 8 PAGES BUFFERS DO YOU WANT BEFORE THE WORK SPACE?

Enter @, 1 or 2 to reserve that many track buffers at the beginning of the work space. Note that device 6, memory
buffered 1/0, uses the first buffer by default while device 7 uses the second buffer by default. Of course, these
defaults can be changed with appropriate POKEs. If no buffers are specified, the program asks:

WANT TO LEAVE ANY ROOM BEFORE THE WORK SPACE?

Enter YES or NO. If the entry is NO, the program outputs the address of the start of the BASIC work space as shown
below. If YES is entered, proceed to the ““HOW MANY BYTES?”’ question below.
If one or more buffers was specified, the program continues with:

WANT TO LEAVE ANY ADDITIONAL ROOM?
Enter YES or NO. If YES, the following question is asked:
HOW MANY BYTES?

Enter the number of additional bytes to be allocated before the start of the work space.
The program then outputs the new address for the start of the work space and the total number of bytes reserved
for buffers, etc. : .

THE BASIC WORK SPACE WILL BE SET TO START AT aaaaa
LEAVING bbbb BYTES FREE IN FRONT OF THE WORK SPACE
IS THAT ALRIGHT?

94

Enter YES or NO. If the answer is NO, the program requests that an exact lower limit address for the work space be
specified. .

NEW LOWER LIMIT? .
Enter a lower limit address. The program then confirms this value by outputting: -
bbbb BYTES WILL BE FREE BEFORE THE WORK SPACE
The program then continues with:
YOU HAVE xx K OF RAM
DO YOU WANT TO LEAVE ANY ROOM AT THE TOP?
Enter YES or NO. If YES, the following.(juestion is asked:
HOW MANY BYTES?

Enter the number of bytes of Random Access Memory (RAM) to be allocated between the top of the work space
and the end of main memory. The program then outputs:

THE BASIC WORK SPACE WILL BE SET TO END AT ccccc
LEAVING dddd BYTES FREE AFTER THE WORK SPACE
IS THAT ALRIGHT? "

Enter YES or NO. If NO is enlered the program requests that an exact number limit address for the work space be
specified.

NEW UPPER LIMIT? .
Enter an upper limit address. The program then confirms this value by outputing;
eeee BYTES WILL BE FREE AFTER THE WORK SPACE.

Note that the reservation of space after the work space is not recorded on disk with a program when it is saved in a
file. The allocation is only recorded as a RAM resident change to the BASIC interpreter and remains in effect until
explicitly changed again, or BASIC is reloaded by typing BAS in the DOS command mode. Later, running a program
that results in an ““Out of Memory’” (OM) error may be the result of.a reduced work space that is no longer
required. Program output continues with:

YOU WILL HAVE fffff BYTES FREE IN THE WORK SPACE
1S THAT ALRIGHT?

Enter YES or NO. If NO is entered, thé Change Parameter Utility Program restarts from th'e beginning. Otherwise,
the requested changes are made, the work space contents are cleared and the program terminates.

DISK COPY

Creating backup copies of disks is a wise precaution. The backup copy provides protection against inadvertently
destroying an important program, either by writing over the program or physically damaging the disk. Two utilities
are provided for disk copying on the system disk.

Copying a disk requires two disk drives. (If a dual disk system is not owned, the OSI dealer can provide these ser-
vices.) In a dual disk system, one drive will be labeled ““A’’, the other drive will be labeled **B”’. Since it is intended
that material on one disk be overwritten with material from another disk, extreme caution is urged in following the
order of instructions. Otherwise, it is possible to end up with two copies of the wrong disk!

First, select a disk on which to make a copy. This can be a new disk or a spare old disk. This disk should be
initialized, a process of placing information on disk for timing purposes. Since this process will overwrite the entire
disk, make sure this disk is truly available.

To initialize the disk, enter the operating system (From BASIC type EXIT). Place the disk ONTO WHICH a
copy is to be made in drive B. In response to the system prompt, type

95

/)

A* SE B <RETURN>
Reply to the system response by
B* INIZ <RETURN>
The system will ask
ARE YOU SURE?
If this is affirmative, then type
YES

If any error message is reported, discard the disk as damaged or faulty. No errors will be reported for successful
initialization. Now when the system prompt is shown, return to use Drive A by replying

B* SE A

Before using the master disk, caution encourages the covering of the rectangular notch on the side of the disk
with a piece of black electrical tape. This will “WRITE PROTECT”’ the disk against inadvertently overwriting data
and programs to be kept. This tape may be removed later. Now the master disk is ready to be copied.

Place the master disk in drive A. The already initialized disk (ONTO which the copy is made) should be in drive B.
CALL in the copy utility from disk by typing

A* CALL 9209=13.1 <RETURN>

This will load the copy routine at location @20f hex. To execute the copy routine, type -
GO 0200 <RETURN>

The result will be the choice
SELECT ONE:
1. COPIER

2. TRACK @ READ/WRITE
Respond

21 <RETURN>

to select the copier routine. (The TRACK § READ/WRITE is used to restore track @. This is typlcally needed if one
powers down a disk drive with a disk in the drive.) .
The question will be asked

FROM DRIVE (A/B/C/D}?
Reply
A
The dialog continues:
TO DRIVE (A/B/C/D)?
Reply
B
Tracks are selected by replying to the prompt
FROM TRACK?
by
2

TO TRACK (INCLUSIVE)?

96

39
Since adequate care has been taken to this point, the response to
ARE YOU SURE?

YES <RETURN>

Each track number, as it is copied, is displayed on the video screen.

CREATE A DISK FILE

It is useful to be able to name a region of disk for program or data storage. The CREATE utility is set up for this
purpose. It reserves room on the disk for user programs and enters the file name into the directory for future refer-
ence. o ' o

To illustrate CREATE, turn the computer on and bring up the disk operating system (OS-65D V3.N). This proc-
ess is called ‘‘booting up’’ the system. When the BASIC prompt

OK
appears, type
RUN“DIR” <RETURN>
Respond to the question '
LIST ON LINE PRINTER INSTEAD OF DEVICE #2?
by answering
NO <RETURN>
A listing of the disk directory appears. A typical directory listing follows:

0S-65D VERSION 3.N

—DIRECTORY —
FILE NAME TRACK RANGE
0865D3 9 —12
BEXEC* 14—14
CHANGE 15—16
CREATE 17—-19
DELETE 20—29
DIR , 21-21
DIRSRT 22-22
- RANLST 23—24
RENAME 25—25
SECDIR 26—26
SEQLST 27—-28
TRACE 29—29
ZERO 30—31
ASMPL 32—-32

50 ENTRIES FREE OUT OF 64

97

The 10 directory files use up 19 of the 64 available directory entriés. Fifty (50) entries remain free.

If any track between @ and 39 does not have a file name, the user can use that track for his purposes. Now it is sug-
gested that a file called SCRTCH be created. It is a good idea to have such a file for storing programs during develop-
ment stages.) File names consist of six ‘or fewer characters; the first character must be a letter. Type

RUN"CREATE” <RETURN>
When asked for a password, respond with
PASS <RETURN>
Then, the computer will respond with
"FILE NAME?
Respond with
SCRTCH <RETURN>
The computer response
FIRST TRACK OF FILE?
will be answered with
39

(or whatever track was clear) ,
Assuming there is only 1 track to copy, the prompt - ~

NUMBER OF TRACKS IN FILE?
is replied with

1

Now when
RUN“DIR”

is typed you will see this new file ““SCRTCH’’ on the disk.

It is common practice to create a scratch file ““SCRTCH.” It is possible to slore 2K bytes (approximately 2000
characters) on a track. Take the memory size in Kbytes and subtract 12K (the approximate system requirements),
leaving the BASIC work space size. For example, a 24K system needs 24K — 12K = 12K bytes of storage. Since 2K
bytes fit on a track, the entire BASIC work space could be stored on 6 tracks. Small programs will obwously require
far less disk storage. :

98

APPENDIX H
HEX TO DECIMAL TUTOR

Within computers, calculations are made in zeros and ones, a binary system. This representation of numbers is
more convenient than on traditional base 10 (decimal) system. For compact notation, the binary representation is
often written by grouping multiples of 2, specifically powers of 2*2*2*2*=16. This notation, base 16, is called a hex-

adecimal number system.

The manual’s illustrations of the ASC and CHR$ commands can be used to write a program to convert decimal
numbers (counting in base 19) to hexadecimal numbers (counting in base 16).

To count in the base 19 numbering system, the symbols @, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are used, 1 symbols in all.
A place holder notation is employed to represent a number, so that

123 = 1*10A2 + 2*10A1 + 3*"10AQ = 100+ 20 + 3
= 1100 + 210 + 3'1
=100+ 20+ 3

(where A indicates ‘‘to the power™).

In the other case, base 16 (hexadecimal) counting will require 16 symbols. By common agreement the symbols
are®,1,2,3,4,5,6,7,8,9, A,B,C, D, E, F. Here A hexadecimal corresponds to 19 demmal BhexadeCImal cor-
responds to 11 decimal, etc. Therefore, the number

123 hexadecimal = 1*16A2 + 2*16A1 + 3*16AQ decimal -
= 1*256 + 2*16 + 3*1 decimal
= 256 + 32 + 3 decimal = 291 decimal
Similarly, the number 3A hexadecimal is
3A hexadecimal = 3*16A1 + 19*16AQ decimal
= 3*16 + 19*1 decimal
= 48 + 10 decimal

= 58 decimal

This much calculation is a sure candidate for a computer program. Also, in some of the advanced programming
techniques, it will be necessary to be able to convert from one system to another. This problem of number system
conversion provides a chance to use the ASCII conversion commands in the programming. Moreover, this program
is readily modified to permit data entry into programs in either hexadecimal or decimal. For occasional conversions,
there is also provided a decimal to hexadecimal conversion table elsewhere in the appendix. Now look at the ASCII
code table in Appendix I.

Symbols @ through 9 have ASCII codes of 48 to 57 decimal. By subtracting 48 from this ASCII decimal code, the
results are the numerals in the range § to 9. For example, the ASCII code for 3 is given as:

ASCII Code for symbol “3” = 51
If we subtract 48 from 51 (the ASCII code value of the number 3), we get the numeric value, 3.
ASCII code for symbol “3" = 48 = 51—-48 = 3

This observation permits the change of the code representation of numbers @ to 9 into the numbers, themselves.
Similarly, the symbols A to F are represented by ASCII codes of 65 to 7@ decimal. By subtracting 55 from this
code, the decimal value which the hexadecimal notation implies can be obtained.

99

In summary,

1. the ASCII code for the symbol ““A” = 65
2. the number A hexadecimal = 10 decimal
3. thus the ASCII code for ““A”” — 55 = 6555 = 10

permit the conversion of values for the ASCII symbolé A to F. This conversion can be used to complete the
algorithm for conversions from hexadecimal to decimal. -
To go from decimal to hexadecimal (the reverse direction), note how remainders from division yield the separate

digit’s representation. For example, in base 19, for the number 123, do successive divisions, and observe the re-
mainder;

10/ 123
19/ 12 + remainder 3 A
10/ 1+ remainder 2 A

® + remainder 1 A

yields the base 10 representation when read in the direction of the arrow. Trying this in base 16 to find the hex-
adecimal value of 2@ decimal

16/ 20
16/ 1+ remainder 4 A
@ + remainder 1 A
gives the hexadecimal value of 14 when read in the direction of the arrow. This checks since
1*16A1 + 4*16A0 = 20
Slightly harder is converting 28 decimal
16/ 28

16 /+1 + remainder 12 = B hexadecimal A

@ + remainder 1 = 1 hexadecimal A

giving the hexadecimaal value of 1B. Next, combine these two conversion algorithms in a flow chart, Fig. 27, shown
in overall form.

It is common practice to indicate hex numbers by use of a leading $, for example, DE@@ hex = $DE®Q.

100

INPUT
NUMBER

CONVERT TO
HEX OR DECIMAL

:

FIND
LENGTH

!

SUM=9

FOR
EACH
DIGIT

TERM=DIGIT*16A
(DIGIT POSITION)

:

SUM=SUM+TERM

©

PRINT
ANSWER

S

INITIALIZE SUM

*NOTE
ASCIl DIGIT MUST
BE CONVERTED TO
DECIMAL VALUE

YES

DIVIDE BY 16
AND SET
T()=REMAINDER

REORDER TERMS
RIGHT TO LEFT

i

PRINT ASCII
TERM SYMBOLS

S

Fig. 27 Flow Chart (Hexadecimal to Decimal)

101

FIG. 00184

19 REM HEX AN OSI PROGRAM TO CONVERT " .
20 REM 1) HEXADECIMAL (BASE 16) TO DECIMAL OR
3@ REM 2) DECIMAL TO HEXADECIMAL: L ROEMER 28 MAY 1979
35 PRINT” TYPE “:PRINT” 1 FOR HEX TO DECIMAL
36 PRINT” 2 FOR DECIMAL TO HEX”
49 INPUT “YOUR CHOICE IS”; CHOICE
50 IF CHOICE=1 THEN GOSUB 1000: REM HEX TO DECIMAL
60 IF CHOICE=2 THEN GOSUB 20¢@: REM DECIMAL TO HEX
70 IF CHOICE < 1 AND CHOICE <> 2 THEN GOSUB 3000
80 END
199 REM CONVERT EACH CHARACTER TO ASCII CODE
1000 REM HEX INPUT TO DECIMAL OUTPUT
1919 INPUT “YOUR HEX NUMBER IS”; A$
1020 L=LEN(A$)
1030 SUM=0
1949 REM WHEN EXAMINE CHARACTERS, LOW POSITION
1050 REM IS AT RIGHT HAND
1960 FORK=1TOL
10790 M=L+1-K
1080 T2=ASC(MID$(A$,M,1))
1100 S1=SUM+16*(K—1)*(T2-55)
1119 S2=SUM+16*(K—1)*(T2—48)
1130 IF T2> 64 THEN SUM=S1:REM CHECK IF HEX CHAR> 9
1140 IF T2 <64 THEN SUM=S2:REM OR <9
1150 NEXT K
1160 PRINT “DECIMAL VALUE IS”; SUM
1179 RETURN
1180 END .
2000 REM DECIMAL INPUT WITH HEX OUTPUT
2019 INPUT “YOUR DECIMAL IS”; D
2029 IF D> 65535 THEN GOTO 2600
2030 T(9)=D
2049 FORI1=1TO 4 _
2050 T()=INT(T(1—1)/16)
2069 CI()=T(—-1)-T()*16
2079 K=I

102

2080 IF INT(T(1))=0 THEN GOTO 2200

2090 NEXT |

2200 FOR I=1 TO K

221¢ REM: REVERSE ORDER OF DIGITS FOR PRINTING
2220 CH$(K+1—I)=CHR$(48+CI(I))

2230 IF CI(1)> 9 THEN CH$(K+1—1)=CHR$(55+ClI(1))
2240 NEXT |

2250 ZIPS/=""

2260 FOR |I=1TO K

2270 ZIP$=2ZIP$+CHS$(I)

2280 NEXT |

2290 PRINT “HEX"; ZIP$

2309 RETURN

2319 END

2609 PRINT “TOO LARGE A VALUE"

2619 END

300 PRINT “YOUR CHOICE SHOULD BE 1 OR 2"
3010 PRINT “RUN AGAIN IF YOU WISH CHOICE”
302¢ RETURN

- 3p3p END

103

[LU FIATNET
OOOOOOOOS

[S i P G Y

o~
o

PPN
moomx»
00000

N=2hOLON=RO
=y
OROHOCEBND
~os
NGO
o
DT AR =BIRRR
OrBOVOORDNDO
N aanO
NRSHBERSOR
LEONOOEOND

AN

B T P G Qi P S G ORGP
NN

[iy QNN Ny
NN — = =

e e D S Gl G P G I QUG
NRONNIN) = = -t b
NI
AIRININOA) = =t b b b b
NRNNIN) = = d s

DEW=OQDNUNWN
Aoomm8:acmomo

DBW=S0CONNWNO
S8
mmg-omxunww
[e)]a)

AR RPN — b b sk i
0)01(0!\)08
ONOOK

~No

oh

9 A B c D E F
9 10 11 12 13 14 15
25 26 27 28 29 30 31
41 42 43 44 45 46 47
57 58 59 60 61 62 63 {
73 74 75 76 77 78 79
89 90 1 92 93 94 95
106 106 107 108 109 110 113
121 122 123 124 125 126 127
137 138 139 140 141 142 143
153 154 155 156 157 158 159
169 170 171 172 173 174 175
185 186 187 188 189 190 191
201 202 203 204 205 206 207
217 218 219 220 221 222 223
233 234 235 236 237 238 239
249 250 251 252. 253 254 255
265 266 267 268 269 270 271
281 282 283 284 285 286 287
207 298 299 300 301 - 302
313 314 315 316 317 318 319
329 330 331 332 333 334 335
345 346 347 348 349 350 351
361 362 363 364 - 365 366 367
377 378 379 380 381 382 383
393 394 395 396 397 398 399
409 410 411 412 413 414 415
425 426 427 428 429 430 431
441 . 442 443 444 445 446 447
457 458 459 460 461 462 463
473 474 475 476 477 478 479
489 490 491 492 493 494 495
505 506 507 508 509 510 511
521 522° 523 524 - 525 526 527
537 539 540 541 542 543
553 554 - 555 556 557 558 559
569 570 571 §72 ' 573 574 575
585 586 587 588 ° 589 590 591
601 602 603 604.. 605 606 607
617 618 619 620.° 621 ' 622 623
633 634 635 636 637 638 639
649 650 651 652 653 654 , 655
665 666 667 668 669 670 ' 671
681 682 683 684 - 685 686 687
697 698 699 700 701 702 703
713 714 715 716- 717 718 719
729 © 730 739 732 733 . 734 735
745 746 747 748 749 750 751 /
761 762 763 764 765 766 767
777 778 779 780 781 782 783
793 794 795 796 797 798 799
810 811 812 813 814 815 .
825 826 827 828 829 830 831
841 842 843 844 845 846 847
857 858 859 860 = 861 862
873 874 875 876 877 878 879
889 890 891 892 893 894 895
905 906 907 908 909 910 911
921 922 923 924 925 926 927
937 938 939 940 941 942 943
953 954 955 956 957 958 959 .
969 970 971 972 973 974 975
985 986 987 988 989 990 991
1001 1002 1003 1004 1005 1006 1007
1017 1018 1019 1020 1021 1022 1023
1033 1034 1035 1036 1037. 1038 1039
1049 1050 1051 1052 1053 1054 1055 .
1065 1066 1067 - 1068 1069 1070 1071 .
1081 1082 1083 1084 1085 1086 1087
1097 1098 1099 1100 1101. 1102 1103
1113 1114 1115 1116 1117 1118 1119
1129 (1130 1131 1132 1133 1134 1135 \
1145 1146 1147 1148 1149° 1150 1151
1161 1162 1163 °~ 1164 1165 1166 1167
1177 1178 1179 1180 1181 1182 1183
1193 1194 1195 1196 1197 1198 1199
1209 1210 1211 1212 1213 1214 1215
1225 1226 1227 1228 1229 1230 1231
1241 1242 1243 1244 1245 1246 1247
1257 1258 1259 1260 1261 -1262 1263
1273 1274 1275 "1276 - 1277, -1278 1279

o N

HEXADECIMAL-DECIMAL CONVERSION

4 5 6 7 8 9
1284 1285 1286 1287 1288 1289
1300 1301 1302 1303 1304 1305
1316 1317 1318 1319 1320 1321
1332 1333 1334 1335 1336 1337
1348 1349 1350 1351 1352 1353
1364 1365 1366 1367 1368 1369
1380 1381 1382 1383 1384 1385
1396 1397 1398 1399 1400 1401
1412 1413 1414 1415 1416 1417
1428 1429 1430 1431 1432 1433
1444 1445 1446 1447 1448 1449
1460 1461 1462 1463 1464 1465
1476 1477 1478 1479 1480 1481
1492 1493 1494 1495 1496 1497
1508 1508 1510 1511 1512 1613
1524 1525 1526 1527 1528 1529
1540 1541 1542 1543 1644 1545
1556 1557 1658 1659 1660 1561
1572 1573 1574 1575 1576 1577
1588 1589 1590 1591 1592 1693
1604 1605 1606 1607 1608 1609
1620 1621 1622 1623 1624 1625
1636 1637 1638 1639 1640 1641
1652 1653. 1654 1655 1656 1657
1668 1669 1670 1671 1672 1673
1684 1685 1686 1687 1688 1689
1700 1701 1702 1703 1704 1705
1716 1717 1718 1719 1720 1721
1732 1733 1734 1735 1736 1737
1748 1749 1750 1751 1752 1753
1764 1765 1766 1767 1768 . 1769
1780 1781 1782 1783 1784 1785
1796 1797 1798 1799 1800 1801
1812 1813 1814 1815 1816 1817
1828 1829 1830 183t 1832 1833
1844 1845 1846 1847 1848 1849
1860 1861 1862 1863 1864 1865
1876 1877 1878 1879 1880 1881
1892 1893 1894 1895 1896 1897
1908 1908 1910 1911 1912 1913
1924 1925 1926 1927 1928 1929
1940 1941 1942 1943 1944 1945
1956 1957 1958 1959 1960 1961
1972 1973 1974 1975 1976 1977
1988 1989 1990 1991 1992 1993
2004 2005 2006 2007 2008 2009
2020 2021 2022 2023 2024 2025
2036 2037 2038 2038 2040 2041
2052 2053 2054 2055 2056 2067
2068 2069 2070 2071 2072 2073
2084 2085 2086 2087 2088 2089
2100 2101 2102 2103 2104 2105
2116 2117 2118 2119 2120 2121
2132 2133 2134 2135 2136 2137
2148 2149 2150 2161 21562 2153
2164 2165 2166 2167 2168 2169
2180 2181 2182 2183 2184 2185
2196 2197 2198 2199 2200 2201
2212 2213 2214 2215 2216 2217
2228 2229 2230 2231 2232 2233
2244 2245 2246 2247 2248 2249
2260 2261 2262 2263 2264 2265
2276 2277 2278 2279 2280 2281
2292 2293 2294 2295 2296 2297
2308 2309 2310 2311 2312 2313
2324 2325 2326 2327 2328 2329
2340 2341 2342 2343 2344 2345
2356 2357 2358 2359 2360 2361
2372 2373 2374 2375 2376 2377
2388 2389 2390 2391 2392 2393
2404 2405 2406 2407 2408 2409
2420 2421 2422 2423 2424 2425
2436 2437 2438 2439 2440 2441
2452 2543 - 2454 2455 2456 2457
2468 2469 2470 2471 2472 2473
2484 2485 2486 2487 2488 2489
2500 2501 2502 2503 2504 2505
2516 2517 2518 2519 2520 2521
2532 2533 2534 2535 2536 2537
2548 2549 2550 2551 2552 2553

[(eX(eJu Yo Yoo R0 Too ool]
W=OOONW—0O
—“NOWN=OW

7

HEXADECIMAL-DECIMAL CONVERSION

Y

HEXADECIMAL-DECIMAL CONVERSION

0 1 2 3 4 5
FOO 3840 3841 3842 3843 3844 3845
F10 3856 3857 3858 3859 3860 3861
F20 3872 3873 3874 3875 3876 3877
F30 3888 3889 3890 3891 3892 3893
F40 3904 3905 3906 3907 3908 3909
FS0 3920 3921 3922 3923 3924 3925
Fe0 3936 3937 3938 3939 3940 3941
F70 3952 3953 3954 3955 3956 3957
F80 3968 3969 3970 3971 3972 3973
F90 3984 3985 3986 3987 3988 3989
FAQ 4000 4001 4002 "4003 4004 4005
FBO 4016 4017 4018 4019 4020 4021
FCO 4032 4033 4034 4035 4036 4037
FDO 4048 4049 4050 4051 4052 4053
FEOQ 4064 4065 4066 4067 4068 4069
FFO 4080 .4081 4082 4083 4084 4085

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE

HEXADECIMAL DECIMAL
01000 4096
02000 8192
03000 12288
04000 16384
05000 20480
000 24576
07000 28672
08000 32768
08000 36864
0A000 40960
0B000 45056
0C000 49152
0DO00 53248
OEQ0Q 57344
0FQ00 61440
10000 65536
11000 69632
12000 73728
13000 77824
14000 81920
15000 86016
16000 90112
17000 94208
18000 98304
19000 102400 .
1A000 106496
18000 110592
1C000 114688
1D000 118784
1E000 122880
1FO00 126976
20000 131072

107

e

=

37/ 25

7071F

APPENDIX I
ASCIl CODE CHART

The most common ASCII cbde values for printed characters are:
DECIMAL VALUE HEX VALUE SYMBOL

32 20 Space
33 21 !
34 22 »
35 23 #
36 24 $
37 25 %
38 26 &
39 27 ’
49 28 (
41 29)
42) 2A *
43 2B +
44 2C

45 2D -
46 2E .
47 2F /
48 30)
49 31 1
59 . 32 2
51 33 3
52 34 4
53 : 35 5
54 - 36 6
55 37 7
56 38 8
57 39 9
58 3A :
59 3B ;
60 3C <
61 3D =
62 , 3E >
63 3F ?
64 40 @
65 41 A
66 42 B
67 43 C
68 ' 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 1
74 4A J
75 4B K

108

1

16
11
78
79
80
81
82
83
84
85
86

‘87

88

. 89.

99
91
92
93
94
95

4C
4D
4E

50
51
52
53
54
55
56

57

58
59
SA
5B
5C
5D
SE
5F

109

4F

>SN E<LCCTuIOoWOZZC

14 $E

APPENDIX J
CHARACTER GRAPHICS AND VIDEO SCREEN LAYOUT

28 $1C

2 $2 4 $4

& lIII.[ll
-

8 $8 10 SA 11 3B

I

15 $F 16 $10 17 $11 18 $12

I I

| 1

TTTTT1

22 $16 23 $17 24 $18 25 $19

29 $1D 30 $1E 31 $1F 32 $20

110

33 $21°

5 $5 .
ll~~

12 $C e o

:; ;13_ 20 $14

% .$1:\§ 527 $1§

E34 :j

¢

< 35 $23

1T

I
42 $2A

49 $31

11

1T

]
1

LI

111

111
1

.

41 $29

IREN

36 $24 37 $25 38 $26 39 $27 40 $28
[T TTTI1 1T
1 | B! 1 o
1] e - N
T u m]
1 i 11
43 $2B 44 $2C 45 $2D 46 $2E 47 $oF
»]
n H
]]
50 $32 51 $33 53 $35 54 $36
| | 1 [1 1 TTTTT
] T l I]
|| (1 L] I 11
i 1]] 1 1T
1 ! Il' I'_ [T11 IEEEN
57 $39 58 $3A 59 $3B 60 $3C 61 $3D
- : zm.tt
| | 11
64 $40 65 $41 66 $42 67 $43 68 $44
" T »
17 C
- 1
] , uun o
71 $47 72 $48 74 $4A 75 $4B

556 $37

1]

76 $4C

H

I

T1T11

| 77 $4D 78 $4E 79 $4F 83 $53
; . 0 0 F s
, o o u 1
]]
o I ' m
84 $54 86. $56 88 $58 89 $59 9 $5A
n T T T11 1111
[] 1 |] L]
11 L | :
91 $5B 92 $5C 93 $5D 94 $5E 95 $5F - 96 $60 97 $61
illl) lIl'lll IlIIII‘ T 1111
» u ! . .
L - . |
98 $62 99 $63 100 $64 101 $65 102 $66 193 $67 104 $68
[| 1 TT T ILTTTT TTITTT
H HH a = =5 - - .
=1 I : 11 — - o
’ 105 $69 106 $6A 107 $6B 198 $6C 109 $6D 1190 $6E 111 $6F
TTTTT T 117 11
o |] :}: E
: 11 . 1].I
; 112 $70 113 $71 114 $72 115 $73 116 $74 117" $75

112

1T

IBEEEE

T

IREEEE

I

| I I

= [TTTTTT

11

T

—

]

119 $77 120 $78 21 $79 122 $7A 123 $7B

T 11 TTTT11

| L1 |
um m

1 1
126 S$7E 127 $7F 128 $89 129 $81 130 $82

——

133 $85 134 $86 135 $87 136 $88 137 $89
1490 $8C 141 -$8D 142 $8E 143 $8F 144 $90
147 $93 148 $94 149 $95 150 $96 151 $97
154 $9A 155 $9B 157 $9D 158 $OE

156 $9C

113

I
124 3$7C

SEizi

131 $83

138 $8A

145 $91

152 $98

125 $7D

132 384

139 $8B

146 $92

153 $99

159 $9F

160 $AQ

165 $AS

. :

161 $A1 162 $A2 163 $A3_ 164 $A4 166 $A6 - 167 $A7
’ n N T
H ;
[[l T ma
168 $AS8 169 $A9 170 $AA 171 $AB 172 $AC 173 $AD 174 $AE
T T T TTTTT]
i I i T
i []
1 75 S$AF 176 $B0 177 $B1 | 178 $B2 179 $B3 180 $B4 181 $BS
T T
l N
: et -
182 $B6 183 $B7 184 $B8 - 185 .$B.9 186 $BA 187 $BB 188 $BC
ma » O T
e I . H
189 $BD 190 .$BE 191 $BF 192 $Co@ 193 $C1 194 $C2 195 $C3
I T
- ! - - = T - I
196 $C4 ' 198 $C6 199° $C7 200 $C8 201 $C9 202 $CA

197 $C5

114

AT -
AT

203 $CB 204 SCC 205 $CD 206 $CE 207 S$CF - 208 $DP 209 $Df

210 $D2 211 $D3 212 $D4 213 $D5 214 $D6 215 $D7 216 $D8

220 $DC 221 $DD 222 $DE 223 $DF

217 $D9 218 $DA

| I
224 $EQ 225 S$E1 226 $E2 227 $E3 228 $E4 229 $ES 230 $E6

231 $E7 232 $E8 233 $E9 234 S$EA 235 $EB 236 $EC 237 $ED -

-

17
[
I

L

I
238 $EE 239 $EF 24p $FQ 241 $F1 242 $F2 243 $F3 244 $F4

115

e T

[REEER

EH Illlll’

245 $F5 246 $F6 247 SF7 248 $F8 249 $F9 250 S$FA 251 $FB

T

]
]
1 T1 1] L LITT1]

252 $FC 253 $FD 254 $FE 255 $FF

116

DEC +0 +5 +10 +15 +29 +25 +30 DEC HEX

53248 [~] 63279 D@1F
53312 ~f 53343 D@sF
53376 e = 53407 DQOSF
53449 o | 53471 D@DF
53504 . - 53535 D11F
53568 = - 53599 D15F
53632 e] 53663 D19F
53696 Sl 53727 D1DF
53760 A 53791 D21F
53824 i 53855 D25F
53888 i 53919 D2SF
53952 v 53983 D2DF
54016 54047 D31 E
54080 | 54111 D35

54144 54175 D3OF
54208 54239 D3DF
54272 : 54303 . D41F
54336 54367 D45F
54409 54431 D49F
54464 54495 D4DF
54528 54559 D51F
54592 54623 DSSF
54656 54687 DS9F
54720 54751 D5DF
54784 P 54815 D61F
54848 = < 54879 D65F
54912 I el ~~ 54943 D69F
54976 = s 55¢pp7 DEDF
55040 I~ — 55971 D71F
55104 = i~ 55135 D75F
55168 1 i 55199 D79F
55232 A ’ ~[~.] 55263 D7DF

+90 +5 +10 +15 +20 +25 +30

Video Map (32x 32 Format)

DEC +0 +1¢0 +20 +30 +40 +50 +6p DEC HEX
53248 53311 D@3F
53312 . 53375 DQ7F
53376 i 53439 DQBF
53440 53503 D@FF
53504 . 53567 D13F
53568 53631. DI17F
53632 53695 D1BF
53696 ' , 53759 DIFF
53760 [53823 D23F
53824 53887 D27F
53888 ‘ 53951 D2BF
53952 s 54015 D2FF
54016 54079 D33F
54080 54143 D37F
54144 54207 D3BF
54208 54271 D3FF
54272 54335 DA43F
54336 54399 DA47F
54400 54463 D4BF
54464 i 54527 DAFF
54528 54591 DS53F
54692 54655 DS7F
54656 , - 54719 DSBF
54720 54783 DSFF
54784 54847 D63F
54848 54911 D67F
54912 - 54975 D6BF
54976 55039 D6FF
55040 55103 D73F
55104 55167 D77F
55168 55231 D7BF
55232 . ; 55295 D7FF

+0 +10 +29 +30 +40 +50 +69

Video Map (32x 64 Format)

A17

APPENDIX K

0S-65D USER'S GUIDE

This section is intended to be used as a quick reference guide only for complete details on 0S-65D please refer to

the 0S-65D User’s Manual.

COMMANDS
ASM

BASIC
CALL NNNN=TT,S

DIR NN
EM

EXAM NNNN=TT

GO NNNN
HOME

INIT

INITTT
10 NN.MM

IO .MM

IO NN

LOAD FILNAM
LOAD TT
MEM NNNN,MMMM

PUT FILNAM

PUTTT

RET ASM

RET BAS

RET EM -

RET MON

SAVE TT,S=NNNN/P

Load the assembler and extended monitor. Transfer control to the
assembler.

Load BASIC and transfer control to it.

Load contents of track, ‘“TT’’ sector, ‘S’” to memory location
“NNNN.

Print sector map directory of track ““NN”’.

Load the assembler and extended monitor. Transfer control to the
extended monitor.

Examine track. Load entire track contents, including formatting
formation, into location “NNNN”’.

Transfer Control <GO> to location “NNNN".

Reset track count to zero and home the current drive’s head to track
Zero.

Initialize the entire disk, i.e., erase the entire diskette (except track @) -
and write new formatting information on each track.

Same as “‘INIT”’, but only operates on track ““TT"’.

Changes. the input 170 distributor flag to ““NN’’, and the output flag to
“MM,’-

Changes only the output flag.

Changes only the input ﬁag.

Loads named séurce file, ““FILNAM” into 'rhemory.

Loads source file into memory given starting track number *“TT"’.

Sets the memory I/0 device input pointer to ‘““NNNN”’, and the output
pointer to “MMMM”’.

Saves source file in memory on the named disk file “FILNAM.”
Saves source file in memory on track “TT’’, and following tracks.
Restart the assembler.

Restart BASIC.

Restart the Extended Monitor.

Restart the Prom Monitor (via RST vector).

Save memory from location “NNNN’’ on track “TT” sector"‘S” for

“P” pages.

118

-t .

SELECT X Select disk drive, **X"-where ““X”" can be, A, B, C, or D. Select
enables the requested drive and homes the head to track @.

XQT FILNAM Load the file, ““FILNAM?"’ as if it were a source file, and transfer
control to locatien $327E.

NOTE:
—Only the first 2 characters are used in recognizing a command. The rest up to the blank are ignored.
—The line input buffer can only hold 18 characters including the return.
—The DOS can be reentered at 9543 ($2547).
~—File names must start with an ““A”" to *‘Z’" and can -be only 6 characters long.
—Thé dictionary is always maintained on disk. This permits the interchange of diskettes.
—The following control keys are valid:

CONTROL — Q continue output from a CONTROL-S
CONTROL — S stop output to the console

CONTROL — U delete entire line as input

BACKARROW delete the last character typed.

SHIFT — O delete the last character (polled keyboards)

- ERROR NUMBERS

1—Can’t read sector (parity error).

2—Can’t write sector (reread error).

- 3—Track zero is write protected against that operation.

4—Disketie is write protected.

. -5—Seek error (track header doesn’t match track).
. 6—Drive not ready.

. 7—Syntax error in command line.

8 —Bad track number.

9—Can’t find track header within one rev of diskette.

" A—Can’t find the sector before the one requested.

B—Bad sector length value.
C—Can'’t find that name in directory.

D—Read/Write attempted past end of named file!

MEMORY ALLOCATION

0000 —22FF BASIC or Assembler/Extended Monitor
2200—22FE Cold start initialization on boot
23pP—265B Input/Output handlers

265C—2A4A Floppy disk drivers

2A4B--2E78 0S-65D V3.0 Operating system kernel
2E79—2F78 Directory buffer

2F79—-3178 Page @/1 swap buffer

119

-3179—-3278 DOS extensions
: 3279—-327D Source file header-
327E— Source File -

DISKETTE ALLOCATION

p—1 0S-65D V3. N bootstrap-loads to $220@ for 8 pages). ‘
2—6 9-1/2 Digit Microsoft BASIC. '

7-9 Assembler-Editor (if present)

10—11 Extended Monitor (if present)

12 Sector 1 —Directory, page 1.

Sector 2— Directory, page 2.
Sector 3—BASIC overlays. .
Sector 4—GET/PUT overlays.

13 Track@/Copier utility (loads to $0209 for S pages).
14—-38 User programs and OS-65D utility BASIC programs.
39 Compare routine, on some disks only.

170 FLAG BIT SETTINGS
INPUT:

Bit — ACIA on CPU board (terminal).

Bit 1 —Keyboard on 540 board.

Bit 2—UART on 550 board.

Bit 3—NULL.

Bit 4—Memory input (auto incrementing).

Bit 5—Memory buffered disk input.

Bit 6—Memory buffered disk input.

Bit 7—550 board ACIA input. As selected by index at location $2323 (8995 decimal).
OUTPUT:

Bit §—ACIA on CPU board (terminal).

- Bit 1—Video output on 54¢ board.

Bit 2—UART on 550 board.

Bit 3—Line printer interface. ,

Bit 4—Memory output (auto incrementing).

Bit 5—Memory buffered disk output.

Bit 6—Memory buffered disk output.

Bit 7—3550 board ACIA output. As selected by index.

120

9 DIGIT BASIC EXTENSIONS
INPUT # (DEVICE NUMBER)

INPUT “TEXT”;# (DEVICE NUMBER)

PRINT # (DEVICE NUMBER):
LIST # (DEVICE NUMBER)

‘WHERE (DEVICE NUMBER) FOR OUTPUT IS:

1—ACIA terminal

2—540 video terminal

3—550 ACIA UART port

4—Line printer

S—Memory output

6—Memory buffered disk output (bit 5).
7—Memory buffered disk output (bit 6).
8—550 ACIA output

9—Null output

(DEVICE NUMBER) FOR INPUT IS:

1—ACIA terminal

2—540 keyboard

3—550 ACIA UART port

4—Null device

S—Memory input

6—Memory buffered disk input (bit 5).
7—Memory buffered disk input (bit 6).
8—550 ACIA input

9—Null Input

EXIT

RUN (STRING)

DISK ! (STRING)

DISK OPEN, (DEVICE), (STRING)

DISK CLOSE, (DEVICE)

DISK GET, (RECORD NUMBER)

(input is set to new device, output is set to null device. If
device number > 3, null inputs are ignored.

(print “TEXT”’ at current outpui device, then function as
above).

(print output for this command at new device).

(list program or segmenlé of brogram to new device). '

Exit to 0S-65D V3. N
‘Load and run file with name in (STRING).
Send (STRING) to OS-65D V3. N as a command line.

Open sequential access disk file with file name,
(STRING) using memory buffered disk 1/0 distributor
device number 6 or 7. Reads first track of file to memory
and sets up the memory pointers to start of buffer.

Forces a disk write of the current buffer contents to cur-
rent track. .

Using last file opened on the LUN (logical unit number) 6
device, a calculated track is read into memory. Where that
track is: INT (REC.NUM)/24+base track given in last
open command

121

DISK PUT

It also sets both memory pointers to: 128*(REC. NUM.)
—INT(REC. NUM.)/24)) +base buffer address for LUN
6 device. Write device 6 buffer out to disk. The effect is
the same as a ‘‘DISK CLOSE,6"".

EXTENSIONS TO ASSEMBLER

For more details refer to the OSI Assembler Editor and Extended Monitor Reference Manual.

E

H(HEX NUM)
M(HEX NUM)
1(CMD LINE)

CONTROL-I

CONTROL-C

EXTENDED MONITOR

Exit to 0S-65D V3.N
Set high memory limit to (HEX NUM).
Set memory offset for A3 assembly to (HEX NUM).

Send (CMD LINE) to 0S-65D V3 as a command to be executed and
then return to assembler.

Tab 8 spaces. Also:
CONTROL-U 7 spaces.
CONTROL-Y 6 spaces.
CONTROL-T ° 5 spaces.
CONTROL-R 4 spaces.
CONTROL-E 3 spaces.

Abort current operation.

For more details refer to the OSI Assembler Editor and Extended Monitor Reference Manual.

ITEXT
@NNNN

A

BN,LLLL

c

DNNNN,MMMM

EN S
EXIT
FNNNN,MMMM=DD
GNNNN

Send “TEXT” to OS-65D V3 as a command.
Open memory location ““NNNN”’ for examination.
Subcommands:

LF—Open next location.

CR —Close location.

DD —Place “DD”’ into location.
>’ —Print ASCII value of location.
/—Reopen location.
Uparrow—Open previous location.

Print AC from breakpoint.

Place breakpoint ““N”* (1-8) at location, “LLLL”.
Continue from last breakpoint.

Dump memory from “NNNN”’ to “MMMM”’.

Eliminate bf'eakpoinl N,

Exit to 0S-65D V3. N , _ :

Fill memory from “NNNN’’ to “MMMM”’ —1 with “DD™".

Transfer control to location ‘‘NNNN.

122

HNNNN,MMMM(OP)

I

K

L
MNNNN=MMMM,LLLL

NHEX)NNNN,MMMM

0
P
QNNNN

RMMMM=NNNN,LLLL
SMMMM,NNNN

T

\
WTEXT)MMMM,NNNN

X
Y

Hexadecimal Calcﬁlator prints result ofb“NNNN”(OP)“MM'MM”
where (OP) is + — * /.

Print break information for last breakpoint.
Print stack pointer from breakpoint.
Load memory from cassette.

Move memory block “MMMM” to “LLLL” —1 to location ‘“‘NNNN”’
and up in memory.

*Search for string of bytés “HEX"’ (1-4) between memory location

‘NNNN" and “MMMM”’-1.
Print overflow/remainder from hex calculator.
Print processor status word from breakpoint.

Disassemble 23 lines from location ‘“‘“NNNN”’. A linefeed continues
disassembly for 23 more.

Relocate “NNNN’ to ““LLLL”—1 to location ‘“MMMM”’

Save memory block, “MMMM” to “NNNN’’—1 on cassette.
Print breakpoint table.
View contents of cassette.

Search for ASCII string “TEXT’’ between “MMMM”’ and
“NNNN’—-1

Print X index register from last break.

Print Y index register from last break.

NOTE: All commands are line buffered by OS-65D. Thus only 18 characters per line are allowed and CONTROL-U
and BACKARROW apply.

SOURCE FILE FORMAT

RELATIVE DISK

MEMORY
ADDRESS ADDRESS USAGE
) $3279 Source start (low)
1 $327A Source start (high)
2 $327B Source end (low)
3 $327C Source end (high)
4 $327D Number of tracks req.
Sandon. . . $327and on.. Source text

DIRECTORY FORMAT

Two sectors (1 and 2) on track 12 hold the directory information. Each entry requires 8 bytes. Thus there are a
total of 64 entries between the two sectors. The entries are formatted as follows:

#-5 ASCII 6 character name of file
6 BCD first track of file
7 BCD last track of file (included in file). .

123

s

TRACK FORMATTING
The remaining tracks are formatted as follows:‘
— 10 millisecond delay. after-the index hole |
— a 2 byte track start code, $43 $57 |
— BCD track number
— a track type code, always a $58

" There can be any mixture of various length sectors hereafter. The total page count cannot exceed 8 pages if more

than one sector is on any given track.
—Each sector is written in the following format:

' —previous sector length (4 if none before) times 809 microseconds of delay
—sector start code, $76
—sector number in binary
—sector length in binary

—sector data

DISKETTE COPIER

The diskette copy utility is found on -track 13, sector 1. It should be loaded into locatlon 200 with a “CA
#200=13,1. To start it, type ““G@ §200*. To select the copier type a *“1’’. Destination dISkS must be initialized prior
to copying. .

TRACK @ READ/WRITE UTILITY

This utility permits the reading of data on track § anywhere mto memory. Also the capability is available to write
any block of memory to track @ specifying a load address.and page count. The track zero format is as follows:

— 10 millisecond delay after the index hole
—the load address of the track in high-low form

—the page count of how much data is on track zero

124

APPENDIX L
MACHINE MONITOR, 65V

The machine monitor provides a simple way to examine and modify memory contents. Data or programs are
entered using hexadecimal (base 16) notation. Programs must be entered in machine code using hexadecimal nota-
tion. A thorough treatment of the Machine Monitor and its uses is found in OSI’s 65V Primer.

The machine monitor provides a simple command structure. The machine momtor is entered after typing
<BREAK> when the C4P gives the prompt

H/D/M?
_ Then type
M

The machine then responds with

o000 XX

where XX are two hexadecimal characters. The computer is now in the machine monitor mode dlsplaymg the con-
tents of location @009 :
To load a given location (address) with data or program, type a period:

- [l
This will select the addressing mode. If the machine were already in the addressing mode, it will remain in the
addressing mode. Now type the desired address. If an entry error is made, reentermg the address w1ll remove the old
value. ,
To enter data into the selected memory location, A transfer to the data entry mode is required. This is done by

typmg a slash:
/

Data may now be entered as two hexadecimal characters. As in the address mode, an incorrect entry can be cor-
rected by typing the correct value. To increment to the next sequential location, press

<RETURN>

Upon completion of loading, the program may be executed at its starting address (for illustration, hexadecimal
address §200); type the starting address and then the Letter ““G” as

0200G

(The period entry caused a return to the address mode.) The program will start executing. (The machine monitor
goes to 9209 to start.) :

ILLUSTRATION

Load a program which places grahics character 250 (hexadecimal FA) into mid video screen location 54320 (Hex-
adecimal D430) — An assembly language program and its machme code would be

HEX LOCATION MACHINE CODE ASSEMBLY CODE COMMENT

0200 A9 FA is symbol for
LDA #3$FA eastward tank
- 920 FA
. 0202 8D

125

HEX LOCATION - MACHINEiCODE ~ ASSEMBLY CObE CdMMENT

0203 30 STA $D430 " Tank to midscreen
0204 D4 ‘ ’ }

9205 EA . NOP |

0206 ' 4C ' < JMP $0205 - "Jump back to NOP
0207 05 ‘

0208 02

This program should place an eastward point tank (character 25@) near mid video screen. The machine monitor in-
structions would be :

<BREAK>
0200

/A9 <RETURN:
FA <RETURN>
8D <RETURN>
30 <RETURN>
D4 <RETURN>
EA <RETURN>
4C <RETURN>
95 <RETURN>
92 <RETURN>
02006

At this point, the tank should appear mid video screen.
For the cassette user, the command L permits loading program from cassette. Upon typing L, all ASCII com-

B8

mands are accepted from the audio cassette rather than the keyboard. Cassettes are prepared with a auto-loading -

program at their beginning. Examples of this are the Extended Machine Code Monitor cassette and the Assembler/
Editor cassette. When the program is loaded, the cassette playback unit may be rewound and turned off.
In summary, the Machine Monitor commands are

/—Use Data Mode
.—Use Address Mode
G —Start execution at the address presently displayed on video screen.
L—Transfer control to the audio casette.
Some of the hexadecimal locations which the Machine Monitor uses are
FE@@—Start of Monitor (restart location)
FEQ@C — Restart with clear video screen, other Machine Monitor parameters unchanged
FE43 —Entry into Address Mode, with initialization bypassed

FE77—Entry into Data Mode, with initialization bypassed
These entry points may be useful to incorporate into other programs.
A more comprehensive discussion of the 65V Monitor is included in the 65V Primer, OSI’s introduction to 6502

~ assembler coding.

126

- »\ﬁf\/—\"/—\f’-w-\—’\/w_\\/’_\

T
s =

SIS

o g A e TN

* APPENDIX M
USR(X) ROUTINE

The speed of machine code execution can be combined with the simplicity of BASIC by using the USR (X) func-
tion. The linking of machine code and BASIC programs is accomplished by the singie BASIC statement

X=USR(X)

The USR(X) function permits leaving the BASIC 'program, executing a machine language routine, and then re-
turning to the original BASIC program. To call the USR(X) routine in BASIC, a pointer to the location of the
USR (X) routine must have been stored. In disk BASIC, these pointers are at 22FC hexadecimal (8956 decimal) for
the low half of the hexadecimal address and 22FB hexadecimal (8955 decimal) for the high half of the hexadecimal
address.

Cassette based C-4P systems, using BASIC-in-ROM, use #@@B hexadecimal (11 decimal) and @@OC hexadecimal
(12 decimal) to store the low and high half of the USR(X) routine address, respectively.

Typically, the operator will want to protect the machine language (code) program by placing it in high memory. If
BASIC’s *‘end of memory’’ pointer is moved to a value at least two pages (512 decimal words) down from the physi-
cal value of ‘‘end of memory,” this memory area can be saved from use by any other routine. For example, on a
24K system (24576 decimal, 6009 hex) these limits would be

24576
- 512
24064
The equivalent calculation in hex is
6000
—20p
SEQD

Therefore, setting SEPP hex as ‘“‘end of memory’” will give a 512 byte clear region for calculations. This ‘‘end of
memory’’ value should be stored with the high order two hex digits in location 2300 hex (8969 decimal) i.e., POKE
8969,94.

Since the “‘end of memory’’ value will need to be stored with a POKE command in BASIC, first convert SE@@ hex
to 9400 decimal.

5E 110 hexadecimal
94 o0 decimal ,

Since the address of end of memory requires two bytes for storage, two POKEs are necessary. The POKE command
requires decimal values as operands. Therefore, each half of the hex address must be converted into decimal, one
half at a time. Conversion was accomplished by looking up the decimal conversion in the table provided in the ap-

. pendix. The high order hex equivalent digits are stored by

POKE 8960 , 94 .
end of memory pointer high memory boundary

The lower half of the ‘‘end of memory’’ is assumed at the page end (9@).

Next, choose the lower end of this now protected memory (above the official ‘‘end of memory’’) to store the
USR (X) routine. Place the address of USR (X) in the location pointer to where BASIC expects the USR (X) address.
The address of USR (X) can be loaded by using POKEs. The two address parts of USR (X) can be POKEd into the

127

location which stores USR(X)’s address by
POKE 895500 = REM—LOW BYTE OF USR(X)‘ADDRESS
POKE 8956,94 = REM—HI BYTE OF USR(X) ADDRESS
REM INTO USR(X) POINTER

Now a program, USR (X), needs to be written to be stored in memory starting at SE@@ hex (24064 decimal). Please
note that this last decimal value is the result of converting all four hex digits of SE@@ at one time, rather than finding
the decimal equivalent of each half of the address. The earlier conversions of half of the address were for storage
convenience, and were not for evalualmg the whole address value.

EXAMPLE: A SCREEN CLEARING ROUTINE :

To illustrate the USR (X) routine, a routine to clear the CRT terminal screen will be written. The letter ““A”’ will
be placed at each screen position, sequentially to illustrate the speed of this routine. Of course, replacing the letter
*“A”” with the symbol for a blank would produce a general screen clearing. This program is described by a flow chart
in Fig. 29 which is reduced to assembly language in Fig. 28 and restated without comments to show sequential loca-
tions in Fig. 30. In this example, the last statement is an RTS (return from subroutine), which returns from the sub-
routine to the calling BASIC program.

In the example, the 6502 microprocessor’s accumulator will be used as the register for data transfer. The X-regis-
ter and the Y-register will be used as counter registers. This usage will be economical in terms of data transfer time,
since the accumulator is the central point for transfer purposes. The X- and Y-registers are serviced with increment
and decrement commands to aid counting operations.

HEX DECIMAL MACHINE ASSEMBLER
LOCATION LOCATION CODE CODE COMMENT

*=$SEQP- "~ Set program counter on SE@@
SE®9 24064 A94]— " LDA #%41 Load accumulator with ASCII A

st PR e 29
SE®2 24066 AP P8 — Load page count
SEp4 24068 A2 00— LDX #3009 Load column counter at zero
LECD rx pre 20
SEQ6 24070 9D 99 D@ STA $D0¢¢ X Store ‘*A’’ at each screen position
SE@9 2473 E8— — INX rh Increment column on screen
SEQA 24974 D@ FA— BNG $5E@6 If columns not complete, loop to store “A”
' again
. St & .
SE@C 24076 EE 08 SE INC $SE@8 If columns complete, increment
page (4 line) counter
SE@QF 24079 88— — DEY .‘Deérement page count
X+ 6
SE19 24080 D@ F4 : BNG $5E06 . If not complete page count,
loop to store **A’” again
LE FRVIC 2.2
SE12 24082 A9 D@— LDA #$D¢ If page complete, then reset
) screen address
. ¥+E

SEl14 24084 8D @8 SE STA $5E@8 Restore operand of page count

SE17 24087 60— — RTS Go back to calling program
Fig. 28 Screen Clearing Assembly Language o

128
X = SIORTENG ADDRESS

E2N

START

LOCATION SEP® HEX

PUT LETTER
“A" IN
ACCUMULATOR

PUT PAGE
COUNT INTO
Y REGISTER

1

PUT COLUMN
COUNT TO ZERO
IN X REGISTER

CONSTANT (Doo9)

STORE LETTER “A” WHICH
IS IN ACCUMULATOR AT
(SCREEN) ADDRESS =
CONTENTS OF X REGISTER

INCREMENT
X VALUE BY 1
(i.e. x=x+1)

IF
COUNT OF
COLUMNS IN X IS
NOT UPTO

NOT
EQUAL

INCREMENT
Y REGISTER
(PAGE COUNTER)

INCREMENT
YBY 1
ie. Y=Y-1)

NOT
EQUAL ZERO

IF Y COUNT
IS NOT ZERO

EQUAL ZERO

LOAD ACCUMULATOR
WITH STARTING
HIGH ADDRESS
OF SCREEN

t |

Fig. 29 Flow Chart (Screen Clearing Routine)

129

: - MACHINE CODE MACHINE CODE
HEX LOCATIONDECIMAL LOCATION (HEXADECIMAL) (DECIMAL)

SEp® . 24064 A9 . 169
SEQI 24065 41 65
SEP2 24066 AP 160
SE@3 24067 98 8 Y
SE@4 24968 A2 162
SEPS 24069 9 0
SEP6 24079 9D ST
SEQ7 24971 09)
SE@8 24972 DJ - 298 30
SEQ9 24973 ES 232
SEPA 24074 _ D@ 208
SEQB 24075 FA 250
SEQC 24076 . EE 238
SEQD 24077 P8 8
SEQE 24078 SE 94
SEQF 24979 . 88 : 136
SE19 24080 D§. 208
SEL1 24981 F4 244
SEI2 24082 A9 169
SE13 24083 DY o W8 32
SE14 24084 o 8D 141
SEIS 24085 P8 8
SE16 24086 SE 94
SE17 24087 60 9

Fig. 30 Screen Clearing Assembly Langljage Showing Sequential Locations

By converting the hexadecimal machine code into decimal values, the code can be POKEd into the desired
memory locations. This is a handy method to enter machine code routines while in BASIC. A BASIC program to
store this machine code at the required locations is

[§

5 REM CLEAR SCREEN PROGRAM |
10 RESTORE : REM SETS START OF DATA LIST
29 P=24064 : REM START AT 5E@D HEX
30 FOR I=1TO 24
49 READ M : POKE PM
5(0 P=P+I
60 NEXT |
70 DATA 169,65,160,8,162
80 DATA 0,157,0,208,232
99 DATA 208,250,238,8,94

100 DATA 136,208,244,169,208
110 DATA 141,894.96

129 END

RUN <RETURN>

130

Running this program places the desired machine code:routine in memory. Now exit from BASIC by typing

EXIT <RETURN>

At this time, the machine code routine can be SAVEd in high memory ‘on disk. For example, use track 39 of the
disk, starting at sector 1, and respond to the prompt

A*
with
SAVE 39,1=5E00/1 <RETURN>

This saves the program located at SEP@ hexadecimal, starting on track 39 at sector 1 for 1 page (256 bytes). This pro-
gram can be reloaded from disk by responding to the prompt ' i

Ai
with
CALL 5E00=239,1

The machine code routine would thus be read off track 39, sector 1 into RAM at SE@@. This screen clearing routine
may be run as follows, reloading the program under BASIC. This reloading under BASIC may be done by typing

DISK!“CALL SE@®=39,1"
Therefore the BASIC program segment , o

9P POKE 8955,0 : POKE 8956,94: REM SET USR(X) ENTRY POINT

100 DISKI“CALL 5E@®=239,1" : REM USR(X) STORED EARLY IN PROGRAM

1000 X=USR(X): REM SCREEN CLEARING ROUTINE INVOKED

including USR (X), would provide a screen clear at a far faster rate than possible with the BASIC program.
An additional feature of USR(X) is the ability to transfer parameters between a BASIC program and a machine
language program.

PASSING PARAMETERS

The machine language routine begins by calling a routine the starting address of which is a $¢@@6. This routine
converts the argument X into a 16 bit two’s complement number which is then stored. The storage location of this
number depends upon the BASIC used, as foliows:

HIGH BYTE LOW BYTE BASIC USED
$PPAE $OPAF ROM BASIC
$00B1 $09B2 65D
The value of X is now available for the machine language routine.

. The machine language routine ends by placing the value to be returned to the BASIC program in the accumulator
(high byte) and the Y register (low byte); then calling a subroutine that starts at 3998. This subroutine wili pass the
value to the BASIC program as USR(X) and then return control to the BASIC program.

131

EXAMPLE

An example is given in this section of a program in 65D BASIC and a mabhine language routine that are liriked by
and have parameters passed by the USR function. In the example, the argument of the USR function is an integer H
between @ and 255. The value of H is passed to the machine language routine which then returns as USR (H) the
number of times the character whose ASCII value is H appears on the video screen.

The BASIC program:
10 POKE 574,90
20 POKE 575,64
30 INPUT “ENTER CHARACTER”;A$
49 H=ASC(AS)

50 N=USR(H)
60 PRINT N
70 END
The machine language routine:
10 ;passing parameters to USR function
20 ;K=USR(C)
30 ;C=character number @<=C<=255
49 ;K=count of how many times the character
50 ; appears on the screen 60 ;
70 3FFC *=8$3FFC
80 3FFC 6C06PP CALL JMP (6)
9P
100 4000 JSR CALL
110 4000 20FC3F START JSR CALL integerize C
170 49@3 A5B2 LDA $B2 the result
180 4p@5 A2D9 LDX #$D@
190 4007 8E1940 STX COMP+2 screen addr (hi)
200 4D0A A200 LDX #0
210 4ppC 8E1840 STX Comp+1 screen addr (o)
220 4QQF 8E3640 STX COUNT
23(?) 4012 8E3740 STX COUNT +1 initialize counter
240 4¢15 AQP8 LDY #8 this many pageé per screen
250 4917 DDFFFF COMP CMP $FFFF,X dui’nmy'addres's
260 401A D8 BNE END
270 4P1C EE3740 INC COUNT+1 count it
280 4p1F DPP3 BNE END
290 4021 EE3640 INC COUNT do this if lo half rolls over

132

300 4024 E8 - END* INX

310 = 4025DOFD ' BNE COMP

320 4p27 EE1940 ~ INC COMP+2

33p 4P2A 88 o DEY

340 4p2B DPEA BNE COMP
1350 4p2D AD3640 LDA COUNT

360 4030 AC3740 LDY COUNT+1

370 4033 6CP8PD JMP (8)

380 4036 OO COUNT BYTE 09

380 4041 00

These two programs can be combined into the following one; the machine language routine is directly POKED into
memory after converting each hex instruction to its decimal equivalent. ‘

2 FOR 1= TO 2
4READV
6 POKE 16380+1,V
8 NEXT
10 FOR 1I=@ TO 55 - ‘ SR .
20 READ V
30 POKE 16384+1V
40 NEXT
50 POKE 574,0
60 POKE 575,64 -
7@ INPUT“ENTER CHARACTER";A$
80 H=ASC(A$)
99 N=USR(H)
100 PRINT N
110 DATA 108,60
120 DATA 32,252,63,165,178,162,208
130 DATA 142,25,64,162,0,142,24,64
140 DATA 142,54,64,142,55,64,160,8
150 DATA 221,255,255,208,8,238,55
160 DATA 64,2008,3,238,54,64,232,208
170 DATA 240,238,25,64,136,208,234
180 DATA 173,54,64,172,55,64
190 DATA 108,80.0.0

133

USING THE ASSEMBLER :

The preceding USR(X) program was shown in Assembly language. The C4P system supports an assembler. The
Assembler/Editor could have been used for creating the program module which was SAVEd on disk.
To use the Assembler/Editor, boot up the system. Once in BASIC, request (after the OK prompt)

EXIT <RETURN>
Type (after the operating system prompts, shown ur;dervliﬁ.f':d)

A* ASM <RETURN> |

| to get the Assembler, and enter the brogram (the same U_SR(X) program as before) after the Assembler prompt.
10.* =$5E00 |
.20 LDA #8341
.30 LDY #$08
.40 LDX #$00
.50 STA $DPPD.X
60 INX
70 BNE $5E06 | .
89 INC $5E08 | |
9PDEY
.100 BNE $5E06
A 1Q LDA #$D@
120 STA $5EQ8
.13p RTS
A

The Assembler file will assemble the program and store it at SE@@ hexadecimal (24064 decimal). The machine code
program has again been stored in memory at SE@® hexadecimal.

At this point, the use of the operating system to SAVE the program on disk would be the same as shown in the
previous section, i.e., typing

SAVE 39,1=5E@01 <RETURN>

~would place the machine code on disk. Running the previous BASIC program segment

99 POKE 8955, : POKE 8956,94
109 DISK!“CALL 5E@@=239,1"
1000 X=USR(X) |
RUN

will result in the same screen clearing routine to be run. ‘
The Assembly language listing provided the machine code needed for the USR(X) loading. Even if the Assem-

bler is not used to create the USR (X) program module, the extensive editing routines of the Assembler/Editor en-
courage its use.

Note, for more detail on the Assembler/Editor see the Ohio Scientific Assembler/Editor Manual.
Finally, an often used USR(X) routine to color the video background is given. This illustrates the brevity and

_simplicity of USR(X).

134

Example: Color Background ‘ ‘ -

This BASIC program sets up an ASSEMBLER subroutine under the USR (X) function. The subroutine changes
the background color of the entire screen. Note, if a disk system is not used then the BASIC code; DISK!*“CA
4FDO=36,1""; must be removed from the program. ‘

To save the assembler program (created by this BASIC program) on disk, type DISK!“‘SA 36,1=4FDO/1”’ after
running the program. This will allow the calling of the program from disk in any other BASIC program by the com-
mand DISK!““CA 4FDO=36,1"" instead of running this BASIC code. ‘

Use the following code in BASIC (after the assembler program is loaded into memory) to execute the assembler
routine. NOTE: this must be done after the subroutine is in memory.

POKE8955,208:POKE8956,79

This is the high and low addresses to tell the computer where the USR(X) function is located in memory.

POKE20433,(choice, #-16)

This is choice of color background.
X=USR(X) |
This is the BASIC command for jumping to an assembler subroutine specified by the previous POKEs.
100 FOR I=2(D432TO2(2)473:READ X:POXE I X:NEXT '
200 DATA162,14,169,0,141,242,79,169,224,141,243,79,173,242,79
210 DATA24,195,1,141,242,79,173,243,79,105,0,141,243,79,201,232
220 DATA240,6,142,0,224,76,220,79,96,0,2

Use of this code or the method should increase the versatility of the computer, both in the speed of its response
and the ease of use. .

135

- APPENDIX N
EXECUTING A DISK RESIDENT MACHINE
LANGUAGE PROGRAM

To access a desired machine language program, there is an alternative to use of the BASIC routine
X=USR(X)

Assume there is a machine code program stored on a dlSk ﬁle named “FILE > The alternate method is used under
the DOS. The response should be

A* XQT FILE <RETURN>

¢

where FILE is the name of the machine language program on dlSk (or it can be the track number where it is stored).
Under BASIC, this is accomplished by

DISK!“XQT FILE”

- In order to use the XQT command, however, some computer housekeeping is required first.

The XQT command brings a machine code program from disk and stores it at location 12921 decimal (3279 hex-
adecimal). When the machine code is stored on disk, some housekeeping is done. The first four bytes on the file
used will contain a “‘header™ which is labeling information provided by the assembler. The next (fifth) byte will
contain how many tracks are to be loaded to contain the program. Then, from the sixth byte to the end of the file,
the machine code, program is stored.

When a machine code file is loaded by the XQT command into memory starting at 12921 decimal (3279 hex-
adecimal), program control will have to skip over the header and track length information ‘and- start with the
program stored at 12926 decimal (327E hexadecimal).

The following is a map of how the program is expected to appear on disk. Also a map of how the file will be stored
in memory.

XQT FILE STORAGE IN MEMORY

'DECIMAL HEX

LOCATION LOCATION CONTENTS

12921 3279
12922 327A

- 12923 327B File header created by Assembler
12924 327C

12925 327D Number of disk tracks to be loaded
12926 327E ’ " Start of first program instruction
12927 : 327F :

136

XQT FlLE_STORAGE ON DISK

' / DIRECTION OF ROTATION

HEADER INFORMATION WRITTEN NUMBER OF TRACKS TO BE

BY THE DOS WHEN THE FILE IS : LOADED. THIS IS LOADED INTO
- ORIGINALLY PUT ON THE DISK. . MEMORY. LOCATION 327D HEX.

With the housekeeping conventions established, start by creating a file called FILE1 which will contain an assem-
bly language code. This program has not been converted into machine code yet. The program shown will store the
message ‘“‘ANY ASCII CHARACTERS” at locations D740 hexadecimal (55104 decimal) which is in the lower left
hand side of the video screen. Enter the program as follows

A* ASM <RETURN>
The computer will reply
0S| 6502 ASSEMBLER

COPYRIGHT 1976 BY OSI

‘Then enter the assembly language code. . . | : - . ‘
19 | I=$327E { SET ORIGIN _
.29 LDX #0 | { SYMBOL COUNTER INITIALIZED - -
_3pLBL1 LDA MSG.X I
.40 BEQ LBL2
. 50 STA $D740X
e i
.70 BNE LBL1

_8pLBL2 JMP LBL2

_9p MSG .BYTE '‘ANY ASCIl CHARACTERS'
100 BYTE @

. 119 END

This can be élored in the previously created ﬁle—FlLEl—_by typing
IPUT FILE1
When this file is already on disk it could be recalled by typing
ILOAD FILE1

In either case, the source program_is not yet ready to be assembled, i.e., converted into machine code. When it is
converted to machine code, the assembled (converted machine code) program will be stored at a location (address)

137

200@ hexadecimal bytes displaced from the assembly language program. A memory displacement or offset,
arbitrarily chosen here as 2099 hexadecimal (valid for 24K machines), must be established in order to be within
memory available and above the region needed by the assembler program, by typing

M2000

and then

A3 : y

The Assembler/Edilor will now assemble the program and leave it at a location offset by 200 hexadecimal from the
intended program origin. Now exit the assembler by typing

EXIT

The assembled (machine code) program should now be placed at the final destination of 327E hexadecimal, which
is where the XQT command will place the first machine code program step. - The Extended Monitor provides the
means of relocating the program from location offset by 200@ hex above the destination of 327E. The previously
used region (327E hex and up) is no longer needed by the Assembler/Editor. .

To invoke the extended monitor from the DOS type

EM - |
The extended monitor prompt is a colon. Type

: M 327E=527E,5298

The difference between the first two numbers is the offset value previously used. The last number is one more than
the last memory location required, all in hexadecimal. The Assembler/Editor provides the address of each instruc-
tion in the listing. By subtracting the last address from the first address in the listing, the hexadecimal length of the
machine code (not including the last instruction) can be calculated. Shorter programs, of course, would require less
memory. ' e . ‘

The integer number of tracks to store the machine code program needs to be determined. Each disk track can
store 2K bytes of code (length of approximately 2009 decimal).

Since the example is 19 hexadecimal in length (25 decimal), far less than one track is required (even if the five
locations needed for the header are added). The information about the track requirement is put in location 327D by
responding to the colon prompt by ‘

- @327D , |
The @ symbol is <SHIFT P>. The Extended Monitor permits the storing of data in 327D fdilbwi‘ng the prompt
327D/P1 '
Reply with
o1
the numb_e—r (two hexadecimal digits) ‘of tracks required. The next response is -
. EXIT <RETURN> | |

In earlier examples in the manuql, files (called scratch files) were created for incidental use. Now is the time to
use one of those files named ““SCRTCH"’ to store the machine code program. This machine code program is stored
by responding to the prompt '

A*with PUT FILE2

t

The XQT command can now be verified by responding to the prompt
A*with XQT FILE2

The message ‘““ANY ASCIl CHARACTERS” should appear on the screen.

The details of this section have been rather involved. By using machine code, the housekeeping responsibilities
within the computer have had to be accepted. In return, considerably faster running programs are obtained. Storage
requirements of the programs are also reduced. If.the speed and‘compactness of machine ¢ode is needed within the
convenience of BASIC programming, the XQT command may prove worth the demands on the user.

138

APPENDIX O

INDIRECT FILES

The indirect file is an uncommonly powerful mechanism to manipulate and combine separate programs.

The need for the indirect file arises from two characteristics of the ‘operating system. First, in order to do editing,
the editor needs to know where a given statement resides in memory. When ‘Assembly language programs are
stored, a somewhat compressed form (tokenized) is used to save memory. This makes it difficult to know where a
given statement is located in memory. Second, in order to load two BASIC programs (assumed to have compatible
statement numbers), i.e., the same stalement numbers haven’t been used in both programs, lhe operaung system
would wipe out the first program when it loaded the second.

These potential problems encourage the placing of the ASCII coded text sequenlrally into a single file in memory
(similar to a file on disk). Also, it is desirable to be able to keep the two loaded modules (programs) together, con-
tiguous, without garbage in between. The disk file handling routines do not give the fine control that the indirect file
does. In an indirect file, the individual characters can be pointed to in a string of text. For these reasons, indirect file
handling has been developed under the 0S-65D V3.N system. The indirect file provides a method of temporarily
storing ASCII code.

The indirect file is stored in high memory. The address of the indirect file is stored in 9554 (high byte only). The
low half of the indirect file address is assumed to be §. For a 24K system, lhe POKE to store the high address byte is

POKE 9554,80

The high byte of the indirect file address, fordiﬁ“erenl memory configurations is

Memory Size POKE 9554 with Decrmal
24K : 80
32K 96
40K : 112
48K 128

These suggested memory allocations provide a balance between indirect file size and avallable user work space. In a
24K system, this allocation of memory allows 4K bytes for the indirect files. Additionally, the indirect file input
address must be POKEJ at location 9368 with the same table value. For a 24K system this is

POKE 9368,80

FIRST EXAMPLE: COMBINING TWO PROGRAMS

The goal is to take the first of two programs and temporarily store it in the indirect file. Then it will be desired to
enter a second program into the BASIC work space, but the LOAD command normally causes overwrmng of the
first. program.

In order to avoid overwriting of one program by another, mdrrect files allow the use of the steps:

1. clean out the work space by typrng
NEW '
enter a program from the keyboard or a disk file
Store the newly enlered program in an indirect file
clear the work space again. This lrme it is done only to illustrate that the old program is removed

enter a new program (with statement numbers Ih'u do not conﬂrct with the first program).

AN

bring the indirect file back into the work space. Now bolh programs are in the work space and have been
merged together.

139

Now to apply these steps in a short example.
The commands to combine two short programs would be

POKE 9554,80 : REM SET INDIRECT FILE OUTPUT FOR 24K SYSTEM
POKE 9368,80 : REM INDIRECT FILE INPUT FOR 24K SYSTEM

The first program is then typed '
10 PRINT“TEST1” : REM SHORT EXAMPLE!

The program is transferred to indirect file by typing

LIST <SHIFT K- <RETURN> Note: at the same time pressing
<SHIFT K>=|

The Ilstmg will appear on the video screen and the program will be lrdnsferred to the indirect file in upper memory.
Now close the indirect file by lypmg

SHIFT M<RETURN:> Note: at the same time pressmg
<SH|FT M>=]

The symbols
1]

will be displayed, along with an error message
7SN ERROR

vi/hich sbhould b‘e ignored.
Typing

NEW

will assure that the program is removed from the BASIC work space.
Now enter the second program

20 PRINT“TEST2"”

The command
LIST

will assure that only statement 20 is in the work space.
Typing

<CONTROL X>

will transfer the indirect file back into the work space. Either the RUN command or the LIST command shows that
both programs are now resident in the BASIC work space.

This example has been extremely short. Be cautioned that a large program in the BASIC work space could over-
write the indirect file.

SECOND EXAMPLE: CREATING A BUFFER FOR A BUFFERLESS
PROGRAM

This exaﬁ]ple illustrates adding a buffer to a previously written program which lacked a necessary buffer. The
original program could be loaded from its file, say FILE], by

DISK!“LO FILE1”

Note: at this point PEEKSs could be done to verify that no buffer was in front of the program, FILE1. Again, POKE
the indirect file 1/0 addresses for 24K systems

140

4

POKE 9554,80
POKE 9368,80

Typing _
LIST <SHIFT K> <RETURN>
and
<SHIFT M> <RETURN>

writing FILE1 into the indirect file and closmg that ﬁle
Type .

NEW

to remove FILE! from the BASIC work space. Run the program “CHANGE” {0 create the needed buffer. Now,
reload FILEI1 from the indirect file by typing

<CONTROL X> <RETURN>

The original program with its newly acquired buffer is now resident in the BASIC work space. This program can be
stored with the PUT command back on its original disk file (caution, the program is now larger by the buffer size,
one or two tracks) by

DISK!"PUT FILE1”

This completes the examples. Since the indirect file stores its data as ASCII characters, it may be useful for file
manipulation programs. There is a potential for greater utility than these examples with other appllcatlons The
indirect ASCIHI file is a subtle but powerful tool for experienced programmers.

141

APPENDIX P
BEXEC*

BEXEC* is the program which links the operating system and the end user programs. It is run by the operating.
system prior to turning control of the computer over-to the user. BEXEC* typically provides setting critical
parameters, such as specifying the input and output devices, and disabling or enabling certain entries, such as the
<CONTROL C> entry to permit interrupting user programs. The demonstration disks and the operating system
disks each have a program called BEXEC*. These versions may be used by copying the BEXEC* program for use in
the users program development. However, it will often be desired to set some initial parameter (i.e., POKE some
location) or run some initial program (Such as a screen clearing program) prior to reverting to input to the BASIC
system.

To start with an example of one:
10 REM BASIC EXECUTIVE
20 REM
24 REM SETUP INFLAG & OUFLAG FROM DEFAULT
25 X=PEEK (1@95@):‘ POKE 8993, X: POKE 8994, X
39 PRINT : PRINT “BASIC EXECUTIVE FOR OS-65D VERSION 3N : PRINT
40 PRINT
50 GOTO 109
60 PRINT : INPUT “FUNCTION";A$
70 IF A$="CHANGE” THEN RUN “CHANGE"
80 IF A$="DIR” THEN RUN “DIR"
90 IF A$="UNLOCK” THEN 10000
100 PRINT
110 PRINT “FUNCTIONS AVAILABLE:"
120 PRINT “CHANGE—ALTER WORKSPACE LIMITS”
130 PRINT “DIR—PRINT DIRECTORY"
140 PRINT “UNLOCK—UNLOCK SYSTEM FROM END USER MODIFICATIONS”
150 GOTO 69
10000 REM
10019 REM UNLOCK SYSTEM
100290 REM
10030 REPLACE “NEW” AND “LIST”
10040 POKE 741, 76 : POKE 750, 78
10050 REM
10060 REM ENABLE CONTROL—-C

142

10079 POKE 2073, 173

10080 REM

10099 REM DISABLE “REDO FROM START"
10100 POKE 2893, 55 : POKE 2894, 8

10110 PRINT : PRINT “SYSTEM OPEN" : END

The BEXEC* program shown sets the input and output devices to be the keyboard and video display and prompts
the user to use the DIRectory or CHANGE utilities. If these utilities are not requested, the editing and debugging
features of “NEW”’, “LIST”", and <CONTROL C> are enabled. In certain programs (such as the example used in
the section on Joystick use), the user may wish to disable these optional utilities prior to running programs. BEX-
EC* provides the ideal time to take care of these housekeeping functions.

Demonstration or game disks often require special provisions to be made. BEXEC* provides the opportunity to
make these changes, including the guiding of the user by program prompts. To simplify use of demo or game disk, it
is often convenient 1o start the user in his/her program. For example, to run a program (here called DEMO), the
last statement in BEXEC* could be

RUN“DEMO”

In this manner, BEXEC* can take care of routine keyboard entries and simblify user response. As in most
endeavors, simple is better.

143

APPENDIX Q
I/0 DISTRIBUTION:

Use of multiple input and output devices can be accomodated without the need for specialized PEEKs and
POKEs, by using the I/0 distribution system which is available under the DOS and BASIC. The following is an
illustrative example using the ACIA.

The simplest way to send data to the ACIA is to informi'the Disk Operating System (DOS) that the ACIA is to be
an output port. The command, respondmg to the DOS prompt

Ai

10,01

This assigns the ACIA as the sole system output port.
The general form of 1/0 distribution is -

10 ,nn to assign input devices only
) 10 mm to aSS|gn output devices only
IO ,An,mm to assign both input and output devices

A blank must be used in the command, as illustrated.. Note that these numbers, nn, mm are in hexadecnmal (base
16). Each dev1ce ‘number assignment must be a two digit number selected from the followmg list:

HEX NN INPUT DEVICE CODE . HEX MM OUTPUT DEVICE CODE
| 08 Null ' ' 0 Null .
@1 Serial Port (ACIA at FCQ) @1 Serial Port (ACIA at FC@Q)
@2 Keyboard on 549 Board @2 Video on 540 Board
@4 UART on 550 Board @4 UART on 550 Board
@8 Null @8 Line Printer
719 Memory - ' ' ' 1@ Memory
20 Disk Buffer 1 20 Disk Buffer 1
40 Disk Buffer 2 49 Disk Buffer 2
_ 80 550 Board Serial Port _ 80 550 Board Serial Port

Each of the device codes listed is a hexadecimal value corresponding to one bit or device. For example, the ACIA
(device @1) is given by bits

0000 P01
and the video board (CRT terminal) is device @2, given by bits
' o000 0010 |
Both devices can be used simultaneously by specifying the device with a bit pattern

0000 0011 ‘ Lo :

144

which 'is hexadecimal @3. Therefore

10,93

Will send data to the CRT terminal and the device on the AClA porl snmullaneously Multlple olitput devices may
be used (in contrast to only single input devices).

OTHER DEVICES

For other devices, it is probably easier to accept the device handlers built into the BASIC programs. Under
BASIC, the devices are numbered sequentially, 1 to 9. This renumbering is distinct from the previous l/O com-
mand example. Under BASIC, the devices which are available are

DEVICE ‘ DEVICE -

NUMBER INPUT DEVICES NUMBER OUTPUT DEVICES
1 Serial Port (ACIA) 1 Serial Port (ACIA)
2 Keyboard on 540 Board 2 Video on 549 Board
3 UART on 550 Board 3 UART on 550 Board
4 Null 4 Line Printer
5 Memory 5 Memory
6 Disk Buffer 1 6 Disk Buffer 1
7 Disk Buffer 2 7 Disk Buffer 2
8 550 Board Serial Port 8 550 Board Serial Port
9 Null _ 9 Null

The DOS 1/0 command previously discussed remams in effect until it is reset or an error occurs. If an error occurs,
the default value is set (start up value). In contrast, the device numbers above can be assngned for each input/output
operation as needed. For devices other than those set up by the DOS 1/0° command, the device .assignments
immediately above could be used.

For example, to read from the keyboard and write on lhe printer altached to lhe ACIA, the followmg mstructrons
could be used:

19 INPUT #2,A$: REM KEYBOARD INPUT e e L
29 PRINT #1,A$: REM TO PRINTER ON ACIA |

3D LIST #1 : REM AND LIST PROGRAM, TOO

RUN

Yielding the input prompt
?

After typmg a message (72 characters or 1ess) and a <RETURN>, the message and the program will be pnnled on the
serial printer.

DISK USE

As an input/output device, disks can be used in a similar manner.
However, prior to using the disk, the user should provide for protecting his buffer areas by running the CHANGE
program as

RUN"“CHANGE"

Respond to the terminal width change with
NO <RETURN> |

and respond to a request to change the BASIC and ASSEMBLER use of memory by
NO <RETURN>

but respond to the work space limit change by

145

YES <RETURN>

The CHANGE program will ask **how many 8-page buffers before the work space.” (Remember each page contains
256 characters.) There are only two valid responses here (1 and 2)

1. if only one file is to be used

2. two files must be 6pen simultaneously

For the example that follows, 1 is sufficient. No additional room is required, so respond
~ NO<RETURN> '

to that question. It is also not necessary to request any room at the top for this example..
The small differences between a disk and other devices are the need to open a. disk file by name as

DISK OPEN,8, “FILE1"

and to close the ﬁlé when finished by.
DISK CLOSE.6

These last two statements can be used 10 store a string received from the modem. The input from the mbdc:‘m would
be

INPUT #1,A%

where the string A$ must have as its last character <RETURN>.
Combining these three stalements into a program to write a single message on disk

* 10 DISK-OPEN,6, “FILE1” :REM OPENS DISK (W/ONE BUFFER) *

20-INPUT #1,A$ - . :REM LISTENS TO MODEM
30 PRINT #6A8 ~~ :REM ECHOS TO DISK

- 40 DISK-CLOSE;6 - :REM CLOSES DISK FILE
50 END ' '

Likewise, we could later recover the data by the program
19 DISK OPEN,6, “FILE1"

20 INPUT #6,A%
30 PRINT #2A$
40 DISK CLOSE6
50 END

In this problem, writing and reading was done sequentially. Modifying the program to. accept multiple messages

requires that they be stored sequentially.
It is possible to inspect the sequential disk-file by X

RUN"SEQLST™
which provides a listing of the file when the information requested is given. The computer responds
SEQUENTIAL FILE LISTER
TYPE A CONTROL C TO STOP
FILE NAME?
Respond with the file name of a sequential file

FILE1

’

146

and a listing of the file will be printéd. Upon reaching the end of the disk file, the message -
ERR #D ERROR IN 109 '

will indicate completion of the listing.

Caution: be aware that when using the SEQLST utility to inspect files which have BASIC programs stored in
~ them, the display will look different than the original text. The reason for this is that the BASIC program stores
BASIC source programs in a shorthand, called a tokenized form. '

Another popular way is to transfer the dlSk file (say it was stored on track 39) by the CALL statement

DISK!"CALL D3p@p=239,1"

which writes the file contents onto the middle of the CRT screen. Note that some apparent garbage will be addi-
tionally printed here due to the unused portion of the disk file’s being printed, too.

To handle data in a random order, for example extracting the 20th data item from a file, it isTnot necessary to read
the 19 prior data items. The use of random data items, also called records, is particularly useful when examining a
large set of data. Such data might be a set of customes accounts, a checking account history, or even temperature
records for given days. In all these cases, the need arises to extract a specific record, without looking at all the prior
records.

To aid in understanding the handling of randomi records, visualize a pointer Wthh marks the start of a record. The
GET command moves this pointer at the start of a given record. For example,

DISK GET.9

places the pointer in front of the first record. Similarly;
DISK GET5 "

places the pointer in front of the sixth record. This method makes it easy to locate a record on the disk, however it
is wasteful of disk storage capability.

Each record uses a large disk area (128 bytes). The value of 128 bytes is preset by the operating-gystem.

A random (not sequential) input record may be terminated by the PUT command. This will close the present rec-
ord from further input.

A simple program to write three records on disk file **SCRTCH’* and then GET the second.record-from that ﬁle
would be

19 REM PROGRAM WRITE TEST
29 REM OPEN THE DISK FILE SCRTCH
3¢ DISK OPEN, 6, “SCRTCH”
49 REM LOOP THREE TIMES TO END OF LOOP
50 FOR TIME=1TO 3
60 REM PLACE 128 BYTE RECORDS ON DISK BY
70 REM (A) POSITION POINTER WITH A GET COMMAND
80 REM (B) PASSING THE MESSAGE TO THE DISK BY PRINT COMMAND -
99 REM (C) CAUSE. THE RECORD TO BE WRITTEN BY PUT COMMAND ..
100 DISK GET, TIME-1
119 INPUT #2,A$: REM TYPE IN ANY PHRASE FROM KEYBOARD
120 PRINT #6,A$: REM PLACE IN MESSAGE BUFFER
130 DISK PUT : REM TRANSFER MESSAGE BUFFER TO DISK
149 NEXT TIME
150 REM END OF LOOP

147

1690 RCRD=2 , |
170 DISK GET,RCRD-1 : REM POINTER AT START OF RECORD 2

180 INPUT #6,A$. REM READ DISK's SECOND RECORD
190 PRINT #2A$: REM AND OUTPUT TO CRT (TERMINAL)
209 DISK cybse,s ‘

219 END

The use of sequential and random disk files permits simpler control and bookkeeping than the CALL and SAVE
or LOAD and PUT commands which were used for earlier file handling. This is one difference between record han-
dling as compared to file handling.

MORE DEVICES

‘Memory can also be treated as a device. When accepting data from memory (Random Access Memory or RAM)
as the input device, the DOS uses the address found in locations 238A (low address half) hexadecimal and 238B
(high address half) hexadecimal to determine what memory region to use. After each input, the address is incre-
mented by one location. Memory, as an output device, is specified by the contents of 2391 (low address half) hex-
adecimal and 2392 (high address half) hexadecimal.

To load the address of memory to be used as an input device into 238A and 238B, and also load the address
memory to be used as an output device into 2391 and 2392, DOS provides the command

MEM mmmm nnnn

mmmm is the address of memory to be regarded as an input device (its starting address) and nnnn is the address of
memory to be regarded as an output device (its starting address). For example,

MEM 5000,5500

would load the locations

LOCATION .
DEC HEX . CONTENTS
Input 9098 238A 00
Address 9099 2388 - 50
Output 9195 2391 00
Address 9105 2392 55

which establishes memory locations 5@@@® and up to be used as an input device and locatlons 5509 and up to be used
as an output device. No end of these memory regions is specified, so the user is cautioned in their use.

Finally, a device called the null device is provided. The null device permits writing programs without having to
worry about the physical device characteristics. For example, a program could be tested which would normally print
on the printer; by assigning the null device, no paper ‘would be wasted while the program is checked out.

148

o~

TN

L TN T T ‘*\\‘

e ™ st T

[P

A

AISBoard 77
AC 68
ACT 68
AC e 68
ACI2P ... 60
ACLTP .. 60
AC2L 54
Accessory Interface.................. 61
ACIA ., 33
ACTL. ... 51
Action Button................ 43
Advanced

Features............. i, 40

TOpICS. .o 67
Alarm Operations 54
Analog

O 61

To Digital Conversion 62
Appliance Control 50
ASCII

Code....oovviii 25

Example............... 99

Table 106
ASM (Assembler) 38,133
ASMExtensions 121

B .

Back Arrow 119, 123
Backpanel Connectors. 3
BarberPole..........., 76
BASICCommands......................... 38, 81
BASIC Conversions.oovuu... 86
BASIC Errors

BASIC-in-ROM (Cassette) 85

BASIC (Disk) ..., 84
BASIC Extensions 65, 120
BASIC Programming. 12
BaudRate 64
Bit Switching and Sensing 60

149

BEXEC 11, 71, 141
Block 78
Break...... S, 6, 41
Breakpoint........... 121
BUS, 16 Pinl/O....................... 59, 60, 62
Bytes Free.......o .. 95
C
CA-1S 59
CA-20 . 59
CA-21 60
CA-22 61
CA-23 e 60
CA-24 61
CA-25 L 61
Calculator Mode..ooo L 13
Cassette - '
BASIC-in-ROM 14
Cold Start 5
Control Shiftc... 8, 35
DataRecovery 35
DataStorage................................ 35
Load........ 9, 33
Save ... 34
Change Utility0........... ... 10, 94
Character Graphics 109
Character Manipulation 15
Character String0............. 24, 82
Clock, Timeof Day............................ 68
Code, Machine Language....................... 31
ColdStart 20
Color Graphics.................... 27
Color, Inverted. 29
Color's. ..o 10
Color Tuning 76
Combining Programs 139
Computer Setup
Cassette 4
Disk ... 4
Computer Interface to 16 Pin I/OBus 59
Conditional Statement...................... 15, 24

Connections Track @ Read/Writec....... 94
Closed Circuit Video. ...t 2 Utilitieso e 94
Pin ... e 77 DOS (disk operating system)

VideO . oo R 2 Commandsoouiiiii 38
Control C ... 41, 122 Errors. ... 85
Control E. ... 122
Control O ..o 119
Control Q ... 119
Control R 122 E
Control S............ R 119
Control Shift........coiiiiiiiiiiaen, 8 EM Command 38
Control T. .ot 122 Entries Free ...t 97
Control U. ..o e 122, 123 BTOr. o e 60
Control Y ..o 122 BASIC-in-ROM 85
Conversions Disk BASIC ... 84

Analog to Digital 62 DOS . 85

Digital to Analogcovevnnn. 31,62 . Numbers............o.ooooiiiii 118

Hexadecimal to Decimal Chart............... 104 Extended Monitor 38, 121

LANGUAZES .+« . oo et e e e e 38 Extensions to Disk BASIC 65, 119
COPIET . oo e e e e 124 Extensions to Assembler...................... 121
CODY - v e e 95 External Switches.......... ... i, 54
Countdown Timer...........cooevevvee....... 69
Create. . oot e 97

F
File . oo 67
D ACCESS. « oo e oo, 10, 33, 139, 142

D 41 Create. ... 97

Data Register (PIA) 54, 59, 60, 71 Delete ... 93

Default. 24 Indirect ... 139

Delete (files)cooeiriiiniiiiiiann.. 93 - Source Formatting. ..o, 123

Device NUMbeErsoooouiieinaannn... 120 Flag Bit Setting, /O ... 119

DEVICES. . . . v 144, 147 Flow Chart Explanation RS 17

Digital to Analog (D/A) Converter. 30, 31, 62 Frequency (piano keyboard) 92

Dictionaryt e 119

Dimension (DIM)24,81

Direct Video (modifications)..................... 2

Directory
DIR ..o,8,10, 11,97 G
l?iSk Dtirectory Listings............... i 9_1’113; Generator, TONE vvvee s, 30

OTMAL . . o v ettt et e , 97,

DIR SR (Soried directon)..........-.. ST Glaphies - or s g
Allocations . - 79, 80, 120, 123 Greenhouse Example e 71
BASICCommands 6, 81-84
Care of 1
COPIET .« oot 124
Copy 95 H
EXtensionscooviniiiinnnnenen 65, 121
I/0 (OPEN, GET, PUT, CLOSE) 146 Head End Carpscvivveeeeeeennnnns 59, 60
Organizationccoiviinenoniiiinn e, 38 Heterodyning 76
Programsot 7, 36, 37 Hexadecimal to Decimal
Read/Write e 36 Tables.............. S 104
SYSIEIMS & o e e ettt e 10 Tutor and Conversions.ocov.n. 99
Track Formatting 80, 122 Home Securityovivieeiii iy 52

150

I
Indirect Files. il . 138
Inverted Videot 29
I/0 (input/output)
Analog ... 61
DisK .. e 119
Distribution i 143
Flag Bit Setting. oi.. 119
J
Joysticks o 42
K
Keyboard i 40, 92
Keypads. ... 47
KeyUsage. ... 41
L
Labeling............coi i, 13
Languages 31, 38, 67, 124, 133, 135
LeftS. ..o 16
List ... 83, 121
Loops, Explanationof.......................... 20
LUN . 120
M
Mo 41
Machine Code Language 31, 124, 135
Machine Organization.......................... 76
Memory
Allocation ..., 118
Map ... 79
MoOvVeE ..o 82
VideoMaps.............ooiiiiiiiiinn.. 28
MIDS ... 16
Modem o 60, 63
Monitor, Extended,........ 121
Monitor (machine) 124
Real Time (RTMON)........................ 71
Multiplexer. i 61, 62

1561

N
NEW . 124
NOtAtIONS . . oottt e 7
Null Device.oooviiiii 147
0
Organizations
Machine. i 76
Operating System.ccoeerunnnn.. 38
Floppy Disk i 78
08-65D User’'sGuide.cooinn... 116
P
Page 78
Passing Parameters 131
Peripherals. 63, 65, 67
PIAData.............ccovoviooo. .. 54, 55, 60, 71
Piano Keyboardl 92
Plot BASIC. 67
POKEsand PEEKsut. 87
Pound Sign......... i loa, 120
Power
DOWN ..o 8
UD . ot e 6
PRINT ... 81
Printer 65
Program Modeol 13
Prototyping i i 61
R
RAM . .. 33,78
Read/Write
CasSetle . ..ot e 35
Disk ..o 36
Track @. ..o 96
Real Time
ClocK ..ot 68
Control. 68
Monitor (RTMON) 54, 69, 70, 72
Remarks 15
RENAME 93
Return........ 5,6,9, 41
RF Modulator/Standard TV 2
Right$ 16
ROM ... 14
RUN. . 8,9, 13

N -

| Troubleshooting.ot 75
Tutor, Hexadecimal to Decimal 99
U
UNIOCK - e e 7,19, 12
Up AMTow ..o 123
USR(X) Function. 67, 126
\%
Video
Connectionscoiiiiiiiiinninnnn.. 2
Close Circuit.......... e .2
Direct (modifications)......................... 2
RF modulator......... e 2
Memory Map........................... 78, 115
~ Screen Layout............ e110
X
XQT
File Storage............ FS T 135
. Filnam Command e 118
Z
Zero Utilityo 80

S
Screen Cleaning Routine (USR-X) 127
SCRTCH. ... 36, 98
SECtOr. . 78
Security ... 52
SEQLST (sequentlal file lister) 145
Shift (O). ... e, 14, 41
Shift (P) ... 41
SL e 41
Source File Format 123
Sound........ 30
Space Bar................ e .41
Strings R 15
Subscnpted Variables.......... e 21, 24
Summary.62
Switches (external) 54
Syntax (Error) e 75
System Organization e ‘38
T

Telephone Interface 63
Terminal Communications :............. e 63
Time))

Control. ... 68

Of Day Clocko i 68

Monitor (RTMON) e 69
Timer (countdown)covviiiiin. 69
Tone Generatorovieiiineeiinennnnn. 30
Track Formatting 80, 123
Track @ Read/Write....................... 96, 124

152

NOTES

TR et ——— e -

1333 S. Chilicothe Road - Aurara, OH 44202,
Phone: (216)562-3101

Printed in U.S.A. ~ : : . ' . ' Cd4P Operators Mapual

