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INTRODUCTION

Your Ohio Scientific microcomputer is in many ways like the computers that write company paychecks and run
factories, control space missions and predict the weather. This manual is to show how your microcomputer and its
big brothers work.

It is not assumed that you know anything about computers already, just that you want to know the inside story.
You will be discovering how to use your computer at a very direct level, one that permits you to control every capa-
bility that it has. Convenient access to this level is available through a part of your system known as the 65V Ma-
chine Monitor. The 65V Monitor is present in all Ohio Scientific personal computers. The first section will tell what
the Monitor is. The remainder of the manual will guide you in using the Monitor to explore and control your com-
. puter. There will be twenty sections. Each section will discuss a new topic and will suggest something new for you to
do with your system that will help you to understand computers. o

Take your time and play around with the new elements introduced in each section before gomg into the next sec-
tion. Enjoy yourself.



SECTION 1
COMPUTERS, PROGRAMS AND THE MONITOR

Computers are information processing devices. That is their thing! They accept input information and transforms
- it into output data that we can read and interpret, or into sequences of actions which we find useful or pleasing.

Not all information processing takes place in computers. One drives a car by giving it the necessary input through
the ignition, steering wheel, accelerator, etc. The result is a mechanical amplification of the input information. But,
a car is not a computer. There is but one way to process information through a car and that is to drive it. Social
benefits aside, it is a single-purpose device. ‘

A computer can be redirected easily to different information processing tasks. It is a general-purpose device.
Switching tasks is easy because the description of a task is itself information, the natural food for a computer. Of
course, the computer is a machine without intelligence, so the input must be put into a completely prescribed form,
leaving nothing to be figured out on the basis of previous experience.

Computer input is of two Kinds: the information to be processed and the directions for the processing. Informa-
tion to be processed is called input.data. Several kinds of input data will be introduced later. The directions for proc-
essing take the form of a sequence of actions called a program. The actions to complete a task may be called an
algorithm. Expressing the algorithm in a form suitable for computer input, we have a program. The algorithm must
be described in a language that can be ‘‘understood’’ by the computer, in the sense that the computer takes the right
action.

Languages developed for this purpose are called computer languages. One type of computer language spells out
the precise way in which each part of the computer is to participate in processing the data. This is the machine lan-
guage of the computer. Since the parts of different computers are arranged differently, their machine languages are
different. o

When carrying out a task by executing the program which describes it, a computer is actually processing a ma-
chine language program. This does not mean that people who develop programs (programmers) always write their
programs in machine language. After all, the translation of a program from another computer language into ma-
chine language is just another information processing task for the computer. When a translation is being done, the
input computer language is called the source language or source code. The source language is translated by the com-
puter into the object language. Since the objective of the translation is usually machine language, the term object
language or object code is often used for machine language.

The 65V Machine Monitor is a machine language program. We will refer to it by using just the term Monitor. It
does not have to be fed into your computer as input because it is built-in. Built-in programs control your computer
from the time it is switched on or reset (see your operator’s manual for specific directions), until the control of the
computer is given to a program you have entered as input information. The program in control at start-up places a
“prompting’’ message on the video display requesting that you select which built-in program should be executed
next. One of the options in the prompting message is an ‘‘M.”” The program is reading the keyboard for input over
and over, just waiting for you to type something.

As you depress the **“M”” key, control of the computer is turned over to the 65V Machine Monitor. The transfer to
the Monitor program occurs before you can release the ‘M’ key. The Monitor writes a message on the video dis-
play, to be explained in the next section, and begins to read the keyboard, searching for your next input.

Make sure the ‘SHIFT LOCK’ key on your keyboard is depressed. Reset the computer (this method varies be-
tween different OSI computers—consult your operator’s manual). Type ‘M’ in response to the displayed message.
This starts execution of the 65V Machine Monitor.

Observe the display while depressing various keys and try to determine which keys the Monitor interprets as com-
mands. You’ll find the answer as you.read on. Two commands ‘G’ and ‘L’ terminate the execution of the Monitor.
Avoid them until you are finished playing hide and seek. Soon you will be entering the executing machine language
programs with the aid of your humble and ever present servant, the 65V Machine Monitor.

The appendix contains a listing of the Monitor. This manual will teach you how to read and understand that
listing.
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SECTION 2 -
EXPLORING SPACE WITH THE MONITOR

Your computer is a system consisting of physical machinery controlled by stored information in the f orm of pro-
grams and data. The physical configuration does not change as programs execute. That part of the system is called
hardware—the circuit boards, metal cases, etc. Computer programs are frequently changed and are collectively re-
ferred to as software. The hardware components of your system are represented in Figure 2.1.

REGISTERS
: > RAM
" DATA
1 D
DISPLAY
AREA
00Ess
ROM
INSTRUCTION MONITOR
PROCESS /
CONTROL e
PORTS
PROCESSOR MEMORY
1/Q DEVICES OR

COMPUTER . PERIPHERALS
Figure 2.1 Major Hardware Components ’

The programs in control of the system are stored in the memory. A memory consists of a large number of cells.
The contents of a cell are made available to other components by means of its address, a unique number associated
only with that cell. One cell contains a piece of information we call a byte. The byte is defined in Section 4. Cells are
also called memory locations. '

The “‘action’” component that processes data from the memory is the processor. In your system, the processor is a
6502 microprocessor. Information storage locations and processing stations within the processor are called registers.
A single action that a processor can take with some register is called an instruction. A machine language program is a
series of instructions. When one of the processor’s registers, the program counter (PC), is set to the address of the
beginning cell of a program, the processor begins to read and execute the machine language instruction contained in
those cells. The resulting execution of the program causes some memory cells to be altered and exchanges of infor-
mation to take place between the memory and input/output (I/0) devices. The result is the activity of the computer
system that you can observe, from a loan calculation to video animation. '

Memory cells are not all alike. Some portions of memory hold fixed information that cannot be altered as pro-
grams are executed or when the computer is turned off. This portion is called Read Only Memory (ROM). The 65V
Machine Monitor and other built-in programs are located in ROM. Other parts of memory are for temporary infor-
mation, like the data being processed by executing programs, or programs which are brought into memory to pro-
duce a desired behavior at a particular time. This kind of memory is known as Random Access Memory (RAM) or
read/write memory.

As you start the execution of the 65V Machine Monitor, the processor clears the CRT screen (video display) and
writes a four-digit number and a two-digit on a small portion of the display. This is done by transferring characters
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into the RAM display area as shown in Figure 2.1. Contents of this RAM display area are regularly transmitted to
the CRT display screen.

The characters appearing on the screen represent two numbers written in a number system called hexadecimal or
base sixteen. In a section to follow you will learn how these numbers are constructed. The left number is the address
(location) of a memory cell and the right number shows the information contained in that cell. Two hex digits are
enough to express the contents of any 8-bit) memory cell. Addresses or memory cell numbers are.two bytes long
and are represented by four hex digits or represented by four hexadecimal digits. For reasons we can appreciate
shortly, the Monitor ignores most keys reacting only to the decimal digits 9-9, the letters A-G and L, the special
symbols: “‘/** (slash), ‘. (period), and the ‘RETURN’ key.

The decimal digits @- 9 along with the letters A-F are hexadecimal digits. The' Monitor has two ways to react to
keyed in hexadecimal digits. In the Monitor address mode, digits are rolled into the address value (left or four-digit
number) displayed. This changes the right value too, since the new address designates a different memory cell. In
the Monitor data mode, digits are rolled into the data value (right or two— —digit number). Actually, the addressed
memory cell is being altered and the display change reflects the alteration.

The Monitor starts in the address mode. Depressing */° changes it to data mode. When °.” is depressed, the Moni-
tor returns to address mode. The ‘RETURN’ key advances the address by one, changing the data value. You can use
it to move through memory, reading or writing into cells.

The 65V Machine Monitor program starts at a location whose address is SFE@® (read F, E, zero, zero—the $ indi-
cates that this is a hex value). See if you can get that number (without the $) into the address side of the display.
This displays the first instruction of the Monitor on the data side. It should be ‘A2’. Now depress */’ and the ‘RE-
TURN’ key several times. What is happening? You are counting up on the address side and getting a display of the
contents of successive memory cells on the data side. Wherever you stop, write down the address and write ‘22’ into
that cell using the data mode. Now return to address mode (‘") and key-in the address over itself. Disappointed?
The 22’ is not there because you are addressing ROM, where the contents of cells cannot be changed.

Can you enter data and see the result immediately? Yes, in the display area. Each character position of the CRT
screen has a RAM cell associated with it which you can alter in data mode. Most of them now contain the ‘blank’
character. leen the address of a cell in the display area, (see the user’s manual for specific video display locations
for your computer) you can place non-blank characters in nearby cells to create a pattern on the screen. When you
learn how to count in hexadecimal, you can systematically explore the display area and find out. exactly where screen
positions are recorded in the dlsplay memory. A starting location for some prellmmary exploration is the hex-
adecimal number $D 149, a strange looking number if I ever saw one.




'SECTION 3 e
CREATING A GOOD LISTENER

It may be that good listeners are born, not made. But your computer can be programmed to pay strict attention to
every character you type. It cannot nod its head in agreement but it can repeat or echo each character on the televi-
sion screen. . :

Let’s think about the program which describes the ‘‘good listener’’ task. In order to write a program we have to
specify the desired behavior completely, leaving nothing unspecified. The computer understands nothing and must
be told everything. For starters, exactly where on the screen do we want the input to be echoed? Where the Monitor
prompt message was? Okay. When our program is executing, the Monitor will be asleep, having no processor to ex-
ecute it, so these display locations are available for display. Let’s extend the display across the screen so we can read
the glorious stuff we shall be entering. What happens when we reach the right of the screen? Later you can imple-
ment other choices, but for now, let’s start pushing characters to the left making room for new input to the right,
just as the Monitor does to its address and contents display. Will there be any keys which will be used to cause the
“‘good listener’’ to alter its behavior, like the ¢.” and ‘/’ commands affect the Monitor? No, not in the ‘first pass’ ver-
sion. How will the good listening end? We can’t tell it to stop so let it go on forever! ‘‘Forever’ means as long as the
program has control of the processor. The best way to see what the program does is to try it. The sequence of steps in
the flowchart (See Figure 3.1) must be expressed in computer language. This programming step is called coding.
Coding in machine language requires the programmer to express the required processing in terms of operations
which the processor can do with its registers. Using techniques you will be learning in this manual, a machine lan-
guage version of the ‘‘good listener” was created in hexadecimal numbers, so that you can load it from the
keyboard. It should be loaded starting at location @@99, as shown. All key-in’s for loading, using the Monitor, are
shown below. We use the symbol ‘*’ to represent the ‘RETURN’ key. Some locations are shown to the left for
checking during loading.

LOCATION (HEX) WHAT YOU SHOULD KEY-IN ‘ b
0000 P000/A2*00" 20*"ED*FE*9D*46"D1*

2008 E8"EQ*14"DQ*F5*20*ED*FE*

2019 A8*A2*'0p*BD*47*D1*9D* 46"

2018 D1*E8*E@*13"D@*F5*98*8D*

0020 59*D1*4C*@D*00

Before executing the program let’s check the loading. One key-in error can make a big difference. How do we
check it? Type .09/’ —this resets the Monitor to the data mode and resets the display to the beginning of the
program ($0990). Repeated use of the ‘RETURN”’ key allows you to “‘step’’ through the program examining each
location. If you find a mistake, enter the correction.



Computers do one thing at a time, so a program
must be organized that way. An important tool for
planning or showing the sequence of steps in a
program is a flowchart, a diagram such as the one
to the right. Arrows in a flowchart mark the path of
the processor, boxes represent the processing
" that it does along the way. Box shapes have mean-
ing to programmers. Rectangular boxes stand for
processing steps. Slanted sides signal an input or
“an output. Diamonds are decision boxes, repre-
senting tests which select paths for the processor.
In the program a decision step is called a branch.
Branches allow sets of steps to be repeated and
decisions to be made. A set of repeated steps is
called a loop. The six-sided box near the top
denotes preparation for a loop. Ovals show the
start and termination points of the program.

You probably have realized that the flowcharf
represents the ‘“‘good listener.” There are two
loops, one to fill the display line and another to add
characters to a full line. The lower loop has no
decision box, therefore, there is no way for it to
end. There is usually one start point and there can
be several termination-points.

Figure 3.1 A Flowchart
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For example, suppose you type .00/’ and depress the ‘RETURN’ key three times. Suppose the display reads
“@P@3 DD, this is wrong, it should be *‘@@@3 ED.’’ To enter the correction, simply type the correct contents, E fol-
lowed by D. Note that the display now reads ‘@303 ED’’ which is correct. Your correction is now entered. Continue
with the ‘RETURN’ key to check the code. Repeat the above process as necessary until the code on Page 5 is entire-
ly correct.

Now that the program is loaded and checked, it can be executed. The ‘G’ command tells the Monitor to load the
displayed location into the program counter, thus, starting the execution of the program beginning at the displayed
cell. So, .PPPAG will start the “‘good listener.”” Is it listening?




SECTION 4
THE MIGHTY BIT

Information comes into the computer system through its input/output (1/0) devices and is stored in memory. It
moves around inside the processor. Output information appears on the display as numbers, words or pictures. But if
we were inside the computer watching the information go by, we would see it in a strange internal form.

A computer is made of electrical circuits and connecting paths which hold, transmit or process the smallest parti-
cle of computer information there is, the bit. A bit is a simple yes or no, a true or false, one of two possible values.
Internally, this is seen as a one or a zero. It is the universal measure of the amount of information content in any
message. A set of bits taken together is a binary code. Just as a bicycle has two wheels, a binary code is based on two
values. Like the parallel rails of a railroad track, sets of electrical paths carry binary codes around inside the com-
puter. )

Anything that can be said, can be said in a binary code, provided there are enough bits and the bit values have
been assigned a meaning. The bits themselves do not carry the meaning. Sitting there in the computer, we would
not get any message by reading a passing binary code unless we knew the meaning assigned to the bit values by the
sender and receiver of the code. _

To represent a binary code on paper, we write it as a string of characters in which each bit is represented by one of
two possible characters. Bit values are traditionally represented by the symbols ‘0’ (zero) and ‘1’ (one).

A byte is a binary code composed of eight bits. In your computer each memory cell contains one byte. A
character, such as a letter, digit, or punctuation mark, is the type of information which is (forgive the pun) byte size.
When reading the keyboard, the processor loads a byte from the keyboard into one of its registers. This byte indi-
cates which key is being depressed. ‘Good listener’* stores each byte it obtaines in memory cells in the display area.
A byte in the display area directs the display subsystem to a pattern for the character which is to be seen at that posi-
tion. ) .

Somebody had to decide what bit pattern should represent each character. Many computer manufacturers use the
same code, so that computers can transmit character information to each other. The common code used in almost
all small computers is the American Standard Code for Information Interchange or ASCII code.

You can look up the ASCII code for any keyboard ¢haracter in the table in the appendix at the rear of this manual.
We have another way to determine the ASCII value —we can execute a program which reads the keyboard, converts
and displays the bit values it is receiving. The load and execute Monitor commands for this conversion program are:

000Q/20*ED*FE*85"F@*A9* 18" A2"
@7*9D*D2*'D@*66*F@*3E*D2"
D@*CA*10*F5"30"EA
P000G
As you examine ASCII codes, go through the sequence of digit characters §,1, . . . ,9 and note what you see.
If it is convenient to leave your computer on while reading the next section, it will save time. The next section’

suggests a small change in the binary display program, which can be made without keying in the program again, pro-
vided the computer has not been turned off or used for any other purposes.



SECTION 5
THE UGLY TRUTH ABOUT BINARY

Numbers are important to computers. Addresses of memory cells are numbers. The contents of registers and
memory cells often represent numbers. Computers spend a lot of their working time counting and calculating with
numbers. So, numbers have to be represented in binary codes, don’t they? One way of doing it could be seen in the
ASCII codes for digits §-9. Ignoring the left four bits which remain fixed at @911, the digits are represented this way:

0—0000  5—p101
1—0001 6—0110
2—0010 7-0111
3—-0011 8—1000
4—0100 9— 1001

To represent a number like 6502, we can string these codes together, packing two-digit codes to a byte like this:
6502 = 01100101 00000010
.6 5 @9 2

This is a frequently used code for numbers. It is called Binary Coded Decimal or BCD. Can you write the four-bit
codes that are not used in BCD for digits? There are six of them. (The unused codes are: 1910, 1911, 1190, 1191,
1110 and 1111). These unused codes are the reason why BCD is not the most efficient way to represent numbers in a
computer. A memory cell containing a BCD byte is storing only 5/8 of the information it could, because its bits are
not free to express all of their values. Also, the processor circuits which carry out such pleasing operations as addi-
tion and subtraction are complicated by the need to avoid the codes that do not represent digits.

So what is a ‘‘natural’’ number system for computers? One that will allow them to do their thing? We humans are
partial to tens We write the digits 6502 to mean:

(6 < 1000) + 5x100) + @ x 19) + (2 x 1)
or(6x 19% + (5x 189 + (0 x 18") + (2 x 109

The decimal digits 9,1, . . . ,9 express numbers in the decimal number system based on the number ten. What’s
so great about ten? Take off your mittens.

If you are a computer, how many fingers do you have? Two. The characters ‘@’ and 1’ stand for your digits and
the natural way for you to express the above number is 1100119910110, meaning;

(Ax29+ (1 x2M+(@x 29 + (@ x 29 +
Ax2D)+@Ax2V+@x 25+ (@ x 2% +
Ox29+@x 2D+ x2+0Ax2)+ (@x 29

This is the binary number system based on the number two. The BCD codes for numbers up to ten are the binary
representations of these numbers.

In the binary number system every bit pattern is used and stands for a unique number, but only a computer could
love a number like 1100110019110. The ugly truth about binary is that it scrambles human brain waves. We lose our
place in its maze of zeros and ones. The human brain deals best with a few things at a time. We even put commas in
long decimal numbers to mark the place. What we need to deal with binary is something to group those bits into a
shorter, more readable pattern.

The answer lies in those six missing four-bit codes in BCD. If we had digits to represent those extra codes, we
could write binary compactly because every four-bit group could be replaced by the corresponding digit. A digit is
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_ some character given a numerical meaning. To get six. more, we use the letters A-F and assign numbers and their
four-bit binary representations to them, arriving at:

0—0000 < 4—0100 .- 8—1000 .C—1100
1—0001 5—0101 9—1001 D—1101
20010 6—p110 A—1010 E—-1119

3—0011 7—0111 B—1011 F—1111

The number system based on sixteen is called hexadecimal. If our explorations of the universe reveal intelligent
life forms with sixteen fingers, they probably will be using hexadecimal.
. To see how that ugly binary number 1100110010110 shapes up in its hexadecimal form, Just mark off groups of
four bits from the right 1/1001/1991/0110 and replace each group by its hexadecimal digit. You should get 1996¢.
Another system that is sometimes used to represent binary in computer literature is the system based on eight. It
is called octal. In octal, the digits are zero through seven and each digit replaces three bits.
With all these number systems floating around we could get confused. When there is any question about it, the
base number of the system is written as a subscript of the number representation. For example: '

65025 = 110011001011@, = 1966

How would our 16,p—fingered friends write that? Answer:
6502, = 1100110010110, = 19669

Can you figure out why?

You can enlist your computer’s help in a little binary to hexadecimal drill by making a small modification in the
binary display program of the last section. The program loops forever, always looking for a new key-in. Let’s make it
return to the Monitor after accepting one key-in. Then you can use the Monitor to place in a display cell what you
think is the hexadecimal version of the binary code that you see. If you are nght the character ongmally keyed in
will appear on the screen.

If you haven’t turned your computer off since entering the bmary display program itis Stlll there in RAM! Gomg
to the Monitor, alter the program by entermg

PP14/4C*2A*FE*

Now when you enter .0000G, the modified program will display in binary the ASCII code for your next key-in.
Select a nearby display location and enter the hexadecimal code. If you make a mistake on the binary to hexadecimal
conversion, something other than the character you expected will appear, maybe something you cannot key-in.
Does that make you curious? Then why not make some ‘‘intentional’” mistakes? Who’ll know?

'’



SECTION 6
'HEXABURGER HELPER

So why does an alien being with eight fingers to the hand (or four fingers on each of four hands) write
6502, = 1100110010110, = 1966,

with his little alien BIC? Because to him 1 is the one-digit number A. And to him 10 means sixteen. Of course, he
would never call it “‘sixteen.’’ That’t decimal-based terminology. In any number system, 19 stands for the number
on which the system is based. This number is referred to as the base or the radix of the system. Remember that
there is just one set of integer numbers but many systems with which to express them. The equal signs in (back to
earth) :

6502,5= 1100110010110, = 1966,

belong there because we have three representations of the same number.
To find the decimal representation of a hexadecimal number, say, D1E4¢, you translate its digits to decimal and
carry out the decimal calculation it stands for, namely

(183x 16%) + (1 x 16?) + (14 x 16") + 4 = 53732
The calculation is a bit easier if you alternate multiplications and additions |like this:
(13 x 16+ 1) x 16 + 14) x 16 + 4 = 53732

Written out, the calculations look like this:

13 208 209 3344 3358 53728
X 16 + 1 X 16 + 14 X 16 + 4
78 209 1254 3358 20148 53732

13 209 3358

208 3344 53728
The result: D1E44g = 537324,.

As you work with machine language programs, you will want to add two hexadecimal numbers and get a hex-
adecimal result. On way is to convert the numbers to decimal representation, add them, then convert the sum back
to hexadecimal. That’s the hard way. The easy way is to add in hexadecimal, using the same rules of arithmetic we
use in decimal addition. Sounds hard, doesn’t it? Well, judge for yourself. First, let’s take a close look at what’s hap-
pening in the decimal addition:

1
182
+137

319

Since 8 + 3 cannot be represented in one decimal digit, you think of it as 1§ + 1 and write the 1, noting the carry
into the column to the left, as shown.

Hexadecimal addition works on the same way. Write the digits of B6, + 89,4in the format for column-by-column
addition, then add the units column digits. The answer, 159, is represented as F in hexadecimal. In the sixteen’s
column, we get 11 + 8 = 19,4, which cannot be represented in one hexadecimal digit. So, we think of it as 16 + 3,
write down the 3, and carry the 1 from 16 = 1§;4. The whole problem then reads:

B6,¢

+ 89¢
13F4g

10




Hexadecimal subtraction can be done directly, following the same rules as decimal subtraction: In

13F ¢
— B6is
896
we must borrow 1 to go with 3. But, the borrowed 1 stands for 16,4, so we calculate (16 + 3) — 11 = 8.
Hexadecimal addition and subtraction are a help in finding out exactly where display positions appear on your
screen. The number of display positions in a row is a multiple of 16,4. It may be 32,y = 20 or 64,9 = 40,6 This
means that locations displayed in a vertical column differ by that multiple.

11



SECTION 7
MAKING UP ORDERS FROM HEADQUARTERS

Remember the flowchart for ‘‘good listener?”” It showed the sequence of steps for doing the desired processing
and display task. Such a sequence of steps is called an algorithm, as we mentioned earlier. To.bring the “‘good listen-
ing’’ algorithm to life in your computer, you loaded a machine language program into memory as a sequence of bin-
ary codes, keying in each byte of the program as a pair of hexadecimal digits. How did ‘‘good listener’’ get into that
form? By a process that will be described in this section, a process involving two stages called coding and assembly.

In the coding stage, the programmer expresses his chosen algorithm as a series of actions that the computer’s
processor can perform. Each individual action is an instruction. A processor has a menu of available instructions
called the instruction set. Working from a flowchart or some other description of the algorithm, the programmer
chooses sequences of instructions. These include instructions which select sequences to be executed next and other
instructions which cause sequences to be executed repeatedly.

The structure of the microprocessor determines what instructions are available in the instruction set. Coding in
machine language requires a knowledge of that structure because you are expressing the algorithm directly in ma-
chine instructions.

Translation of algorithms into more general computer languages (also called higher level languages) is also called
coding. This approach does not require the programmer to know the “‘insides’’ of the processor. This knowledge is
applied in a program called a compiler or an interpreter that translates the higher level computer language into ma-
chine language instructions. Some high level languages that are translated into machine language are BASIC,
FORTRAN, PASCAL, APL and COBOL. ‘ 4

We are going to be coding in the machine language of the 6502 microprocessor. The 6502 has three registers for
which programers use the names X, Y and A. Each of these registers holds one byte of information. The accumula-
tor, A, is the busiest register by virtue of its direct connections with the processmg circuitry in the 65@2. The X-reg-
ister and Y-register are called indexing registers. Their usual jobs are counting and maintaining the location (or
index) of data being processed.

A translation of the ‘‘good listener’” flowchart into operations on the contents of 6502 microprocessor registers is
given in Figure 7.1. To the left of each box is a description of a way to use the 6502 registers to carry out that step.
The programmer may have a choice of several possibile ways to use the registers. Of course, Figure 7.1 does not rep-
resent the completed coding because the instructions are not specified. Besides spelling out the instructions, the
coding step also involves specifying the location and arrangement of data. In the “‘good listener”’ coding, for exam-
ple, access to display locations is done by incrementing the X-register (register X) by one each time a loop is re-
peated. This approach dictates the arrangement of that data.
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START .

SET
COUNTERS

Load a zero into Register X.

Use a part of the Monitor which loads the ASCII
code for the next key depressed into the ac- READ NEXT
cumulator A. KEY

Store from the accumulator A into the memory cell STORE IN

whose address is D146, plus the contents of X. NEXT DISPLAY
‘ POSITION

increment X by 1 for next store. .

DISPLAY
LINE FULL ?

Compare X with length of display.line. If not yet
equal, branch back for next key.

YES

Use the same routine to load the ASCII code for READ NEXT

next key depressed into the accumulator. ’ : KEY

Load a zero into Register X. Repeat the following

loop across the display: load from the contents of | | MOVE MESSAGE | v

D147, plus X into Y, store from Y into D146,¢ plus ' TO LEFT .

X. Increment and test X. : T

. S_tore from thf-.\ accurpulator into the addres§ on the INSERT INPUT

right of the display line. Jump back to the instruc- AT RIGHT !

tion for reading a key. :
]

Figure 7.1 “Good Listener” as Register Operations

In the coding stage, some flowchart boxes may be implemented by one or two instructions. Others may take many -
instructions. In describing the “‘good listener’’ algorithm, it is helpful to use a single box for the “‘move message
left”’ step. Implementing this step with register operations requires a loop, as shown in Figure 7.2. Loops often in-
volve incrementing the testing an index, such as in Figure 7.2. The index must be given an initial value before the
loop is executed the first time.
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cli) = cli+1)

|- 1

NO

YES

Figure 7.2 A loop for “move message left”

Now getting down to selecting instructions, just what does an instruction contain? An instruction always contains
a binary code called an operation code, or opcode, for short. The opcode identifies the operation to take place and
the manner in which the operands, the data involved in the operation, are to be accessed. Operands are contained in
either microprocessor registers or in memory cells. In the case of memory cells, the instruction selects one of sever-
al addressing modes for the operand. Addressing modes are ways of forming the cell address of an operand in
memory. In addition to the opcode, instructions often contain the operand address or information that goes into the
formation of the address. The operand address derived during the execution of the instruction is called the effective
address. ' o

Figure 7.3 shows a coding of ‘‘good listener.”” The symbolic form of the opcode that most programmers use in
coding is under the heading Mnemonic. The neumeric form of the same opcode that results from the process of as-
sembly is under the heading Opcode.
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LOCATION OPCODE OPERAND LABEL MNEMONIC OPERAND REMARK

0000 A2 00 LDX #@ . CLEAR INDEX

0002 20 EDFE  FILL  JSR GETKEY : NEXT PRESSED TO A

PO05 9D 46 D1 STA $D146  ; INTO NEXT LINE CELL
© poos E8 INX . INCREMENT INDEX BY'1

0009 EQ 14 CPX #20 . END OF THE LINE?

0008 ) F5 BNE FILL . BACK UNTIL EQUAL

@0@D 20 EDFE  REPEAT JSR $FEED  : NEXT PRESSED TO A

0010 A8 | TAY . SAVE KEY IN Y

0011 A2 00 LDX #0 . CLEAR INDEX

0013 BD 47 D1 MOVE LDA $D147  : LOAD LINE(I+1)

0016 o 46D1 STA $D146  ; STORE INTO LINE ()

0019 E8 | INX . INCREMENT INDEX

PP1A EQ 13 CPX #19 . END OF THE LINE?

991G D@ F5 BNE MOVE  : BACK UNTIL EQUAL

PO1E 98 TYA . RESTORE KEY-IN

0O1F 8D 59 D1 'STA $D159  : STORE NEW KEY

0022 4c gD 09 JMP REPEAT : BACK FOR MORE

Figure 7.3 Good Listener as Machine Language Instructions

Compare‘columns 1-3 with the contents of memory (starting at $99@@) resulting from the program entry exercise
on page 5. Notice the pattern of correspondence between the assembly listing here and the machine readable form
of the program given on page 5.

Just as binary numbers are hard to interpret, machine language programs in binary form are not gasy to deal with.
Since programmers want to be able to read and alter programs as well as create them, they usually write them in a
symbolic form using names for operations, registers and memory locations. There is also the important matter of
getting the new program to work in the first place. This process is called “debugging.” There always seem (o be
some little mistakes or ‘‘bugs’’ in a new program, and finding them requires concentrated study of the program. So a
readable form of the program is essential.

Assembly is the process of translating the symbolic form of machine language into binary codes. If the symbolic
form of the program is written according to required format rules, a program can do the assembly task. Such a pro-
gram is called an assembler. The input to the assembler is called assembly language. The symbolic form of Figure
7.3 and other such figures in this manual conform to the standard assembly language mnemonics (symbols) for the
6502 (see list in appendix). (For more information concerning assembly language programming on OSI computers
refer to the OSI Assembler/Editor and Extended Monitor Reference Manual.)

In later sections we shall return to Figure 7.3 to learn about every part of it. For the moment, see if you can tell
where to change the length of the display line. Compare the assembly language version with the flowchart and
description of Figure 7.1. Every instruction is on a separate line and the assembled instruction begins with the
opcode. In the assembly language, the numbers relating to display line length are in decimal; the corresponding
numbers are in hexadecimal in the assembled code. Can you find them? Now select another line length that will fit
on your screen, alter the program and try it. A clue: there are three bytes in the program that must be altered.
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SECTION 8
MAKING YOUR MOVE

How is coding a program like sorting potatoes? Answer: It’s just one decision after another. Would you like to
understand the process and do some coding yourself? Okay, let’s examine some of the decision-making that takes
place in coding. Mostly, the ‘‘good listener’” algorithm involves moving data around. For now, we’ll concentrate on
decisions connected with that. ‘

The part of the 6502 instruction set devoted to moving data around between memory and processor registers X, Y
and A appears in Figure 8.1. There you have almost all you need to know about these instructions for coding and as-
sembly. Missing is the time it takes the processor to execute each instruction. We are seldom concerned with that.
Many manuals and books provide 6502 instruction tables with execution timing. See the Bibliography for refer-
ences. :

Starting with the leftmost column of Figure 8.1, the operation mnemonic is a name for the operation, a name
which is supposed to be easy to remember. Compare the mnemonics to the explanations of the operations. Do
mnemonics help you to remember? Next we have hexadecimal opcodes for each of the addressing modes available
with that operation. The opcode determines both the operation and the addressing mode. There are many ways to
address memory cells with the 6502 processor. Frequently used operations are assigned most of the available
addressing modes, so that you will have ways of expressing algorithms effectively, in reasonably small numbers of
instructions. Not all combinations of operation and addressing mode are available in the instruction set.

OPCODES FOR VARIOUS MODES
ADDRESS MODES

2 10} f\" i}

g 2 & =z 8 ., E

E 2 § T T g8 4 % ¢
MNEMONIC  EXPLANATION = = N =& < N w® % N FLAGS
LDA Load A A9 | AD | A5 | A1 | Bl | B5 | BD | B9 NZ
STA ~ Store A 8D | 85 | 81 | 91 | 95 | oD | 99
LDX Load X ‘A2 | AE | A6 ' | BE | B6 | NZ
STX Store X | 8E | 86 R | 96
LDY Load Y | AD | AC | A4 B4 | BC | Nz
STY Store Y 8C | 84 | 94 |

, - | | MODE IS
' MNEMONIC  EXPLANATION IMPLIED FLAGS

TAX Transfer A to X ' , AA NZ
TAY Transfer AtoY A8 ' NZ
TXA Transfer X to A 8A NZ
TYA Transfer Y to A 98 . NZ

Figure 8.1 Moving Data between Memory, X, Y and A
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At the right of Figure 8.1 there is an indication of any flags affected by the operation. This is included here for tl
sake of completeness. Flags are one-bit registers in the processor whose functions we will go into later.

Most of the addressing modes in Figure 8.1 will be explained in later sections, as we examine different kinds of
information processing. Right now, let’s review the ‘‘moving data’’ coding decisions in the ‘“‘good listener’’ pro-
gram, Figure 7.3. ) '

In the first instruction, index register X is cleared to zero by loading a zero valued byte from memory. The opcode
identifies the addressing mode as immediate mode (A2 in the LDX row, Figure 8.1). In this mode, the operand is
the byte in memory following the opcode. It is known as an immediate operand. Note from Figure 8.1 that registers
A and Y can also be loaded with immediate operands. There are no immediate mode store-in operations, so im-
mediate bytes must be considered to be constants. Memory locations in which a program stores data can represent
variables in the algorithm, quantities that can change during its execution. In the assembler input, an immediate

operand is identified by the character ‘#’ preceding the constant. Identify the other immediate operands in the pro-.

gram. A dollar sign indicates the following digits are hexadecimal, not decimal digits.

We must defer explaining the second instruction, the JSR, but its effect here is to place the ASCII code for the
next key depressed into the accumulator A.

The natural thing to do is to store from A into the display line. The addressing mode of the STA instruction is
absolute, indexed by X. Absolute mode means that a full 16-bit address follows the opcode. For reasons we will
cover later, the absolute address bytes are reversed in the instruction. Do you see what we mean? The -address
intended in the program is the start of the display line, which is D146. The leftmost digits, D and 1, represent the
high order byte of the address. This byte is called the high order or high byte because the bits stand for higher
powers of two than the low byte (46) bits. As a 16-bit binary number, the address is written D146, with'the high byte
on the left and the low byte on the right. In an absolute addressing mode instruction, the low byte comes before the
high byte in memory. When listing the contents of memory, left to right corresponds to increasing addresses in
memory. Thus, the high and low bytes of an absolute address are reversed in the machine language program.

Would you like to change the address of the display line in ‘‘good listener?’” Then you must alter the program in
four places, the absolute addresses with low bytes at hexadecimal 6, 14, 17 and 20.

In the assembly language operands, the characters ¢, X’ denote indexing by X, which means that the effective
address is the sum of the absolute address and the contents of register’ X. What happens to the effective address as X
-is incremented (by one) with each repeat of the loop? This is a very important question. The answer reveals how
“good listener’” works. ' '

There is an instruction in the program using an absolute addressing mode without indexing. It is the JMP instruc-
tion at 22;,. Guess what JMP stands for? In assembly language, names like REPEAT, FILL and MOVE are created
by the programmer to stand for addresses of instruction or data locations. Such names are called labels. Each label
appears to the left of the opcode mnemonic and in the symbolic form of instructions in which the address affects the
assembled code. Labels may be used whenever they are needed.

Continuing with the coding decisions of ‘‘good listener,”” there is a problem in the second loop with having the
key code in register A. We would like to use the sequence

MOVE LDY $D147.X
STY $D146X

to accomplish the left face, forward march of the display. The problem is that STY has no absolute indexed address-
ing mode. No such opcode in Figure 8.1, right? If we used register Y instead of register X as the index register,
would we have the same problem? You bet. To get around the problem, the program saves the key code in the Y
register and uses the accumulator A for the leftward bunny hop. Could this little inelegance be avoided by bunny
hopping first, then getting the new key? The answer is no. Figure out why, then test your theory by arranging the
program that way and observing what happens.

Do you get the impression that coding can be fun? Let’s see if you can reverse the roles of X and Y in *‘good
listener’’ and get a working program. To compare contents of Y with an immediate line length, the instruction reads

CPY #20 :END OF THE LINE?
and the opcode is C@.
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SECTION 9
FETCH AND STEP IT

Many of the 6502 instructions are easier to understand if you know how a computer’s processor goes from in-
struction to instruction during program execution. The processor keeps track of its location in the program by
means of a register caled the program counter (PC). The program countér is the size of an effective memory
address. After the execution of an instruction, it holds the address of the next instruction to be executed.

Each instruction is processed as it is encountered, in a two-part cycle, the fetch-and-execute cycle. In the first
part, the program counter contents are sent to the memory unit which sends the opcode back to the processor regis-

pc | _ ———— ADDRESS ——

IR ~————— OPCODE

PROCESSOR » MEMORY

ter called the instruction register (IR). The program counter is incremented by one. This is the fetch cycle. Now the
processor determines the operation and address mode and carries out the execution cycle. In the execution of the
instruction the program counter advances to the next opcode. It may be further affected by the execution of some
instructions, as we shall see. 4

It is the program counter that provides access to the immediate operands described in the last section. It contains
the effective address at the beginning of the execution cycle. It is efficient to access constants this way, but not varia-
bles. For a variable, some additional mechanism would be necessary to get back to the stored value, once the pro-
gram counter had gone past it. Besides, programs in ROM would have to avoid immediate “‘stores’’ anyway. Re-
member why? For these reasons, the immediate addressing mode is for constants only.

In absolute and absolute indexed addressing modes, the program counter is used to fetch a full two-byte address.
Because the address bytes are stored in reverse order, the low byte is fetched first. This is handy because in indexing
the processor must add a register byte to the absolute address to form the effective address. It gets the low byte first
and adds the index register contents to it. The sum can be too large for a byte but there is no real problem. With your
knowledge of binary, you can confirm that at worst, only one extra bit is needed. The extra bit is called, appropriate-
ly. enough, the carry bit. The processor retains the carry bit, advances the program counter and fetches the high
address byte, then adds the carry to it, forming the full effective address.

Branch or jump instructions provide an effective address which can replace the contents of the program counter.
The replacement causes the processor to start on a sequence of instructions at another location in memory.

With the 65V Machine Monitor, you start the execution of a program by entering its start location into the address
display and depressing the ‘G’ key. This transfers the displayed address into the program counter. From that point
the processor is at the mercy of the program you keyed in. Program bugs or loading errors may bring the program
counter to the address of an invalid or unintended opcode. When that happens, the program loses control of the
processor and, if anything occurs next, it isn’t what you had in mind. Fortunately, the reset key forces the program
counter to the starting address of a program that will listen to you, so that you can get back to the Monitor and look
for the problem. .

With the program of Figure 9.1, you can execute a series of instructions one at a time and observe their effects on
memory and the processor registers. The program contains a ‘*box’’ of three ‘‘no operation’> (mnemonic is NOP,
pronounced no op, like co-op) opcodes in its middle. A NOP instruction does nothing but advance the program
counter by one. To execute one instruction, you insert it in the box where the program counter will reach it as the
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program executes. Any instruction will fit since none are longer than three bytes, but be sure that the unused box
bytes are filled with the EA opcode of a NOP instruction.

The instructions preceding the box load the processor registers and flags from memory locations SWF@ through
$OPF3. After the execution of the inserted instruction, the contents of all processor registers are stored in the cor-
responding memory locations and the program returns to the address mode of the Monitor. At this point you can
examine memory to verify the effects of the executed instruction. Where do you look for the contents of X, Y and
A? (Answer=8F1—$F3)

.RESTORE PROCESSOR TO EXECUTE BOX INSTRUCTION

@PDY A5 FQ LDA SAVE : LOAD FLAGS AND
PPD2 48 PHA : PUSH THEM ONTO THE STACK
@PD3 A6 F1 - LDX SAVE+1 ; LOAD X
@PD5 A4 F2 LDY SAVE+2 ; LOADY
@PD7 A5F3 LDA SAVE+3 ; LOADA ‘ .
PPD9 28 PLP . PULL FLAGS FROM STACK
“THE BOX
PPDA EA NOP ;A BOX OF THREE BYTES
@9DB EA NOP . TO HOLD LARGEST INSTRUCTION
PPDC EA | NOP . : ALWAYS RESTORE TRAILING NOP'S
'SAVE PROCESSOR STATE AFTER EXECUTION
@oDD 08 PHP . PUSH FLAGS
@@DE 86 F1 STX SAVE+1 ; SAVE X
OOEQ 84 F2 STY SAVE+2 ; SAVEY
@PE2 85 F3 STASAVE+3 ; SAVE A
Q0E4 68 PLA . PULL FLAGS
@PES BA 4 ~ TSX _ |
@PE6 86 FF STX SAVE+4 ; SAVE STACK POINTER
@UES 85 FQ STA SAVE . SAVE FLAGS
@PEA 4C 47 FE JMP $FE47 ; S%TSJERN TO MONITOR ADDRESS

Figure 9.1 Execute-in-a-Box Program

When you have looked around enough you are ready to put the next instruction in the box. At the beginning of a
sequence of instructions, you may want to set up initial values for the registers by setting the corresponding memory
locations.

One restriction you must observe: avoid placing a branch or jump instruction in the box. Such an instruction
would allow the processor to escape from the box, with unpredictable results. No problem though. Branches and
jumps effect only the sequencing of instructions, which you are handling anyway, so you would leave them out of
any sequence of instruction you were executing step by step.

Think of memory (RAM) as divided into blocks of 256 bytes each. These blocks dre called pages. The high byte of
an effective address can be considered as identifying a-page, and the low byte as identifying a location within the
page. The first page in memory has the identifying number @@ (zero) and is therefore known as the zero page. By
having an opcode for a zero page addressing mode, the processor can be told to supply a zero for the left byte of the
effective address and the zero byte can be left out of the program. This saves memory space and the execution cycle
time it would take to fetch the zero byte from memory. This feature makes zero page memory locations very valua-
ble. The zero page indexed addressing modes work just as you would suspect. The carry from the indexing sum is
added to the zero byte supplied by the processor-to form the left byte of the effective address.
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To load the “execute -in-a-box’’ program shown in Flgure 9 1, type the followmg (remember *“**’ stands for Re-
turn):

DODP/AS*FO*48*A6*F1*A4*F2*A5*F3* 28"
EA*EA*EA*(8"86*F1*84*F2*85°F3*
68"BA*86*FF*85*F@*4C*47*FE.

To run the program, simply type .00D@G.

The program will return to the Monitor address mode after executing the instruction located at SDA-$DC. This
makes it easy to explore the effect of any instruction on the X, Y, A and S internal 6502 registers. You may experi-
ment by inserting opcodes of various instructions into locations $DA-$DC, running the program and examining
locations $FP-$FA to determine that instructions effect on the 6502’s internal registers.

As an example, suppose we want to simulate ‘‘good listener’” instruction by instruction. We might preset registers
X and A by

QOF1/00 @PF3/2B  or  .PBF1/00**2B
and then insert
STA $D146
in the box and execute ‘‘execute-in-a-box,”” with
.PPDA/9D*46*D1 .(DQDAOG

then examine $D146 to see if it changed.

We are not ready to fully explain the ‘‘execute-in-a-box’’ program now, but one important feature we can con-
sider now is the zero page addressing mode used to access the data beginning at $#0F@ (SAVE).

Load the program and try it out. It may be your best frlend when you are trying to find out what is going on in
some other program
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'SECTION 10
START WAVING YOUR FLAG

Decisions are implemented in programs by branch instructions. In these instructions, the test of a condition
determines whether or not the program counter is loaded with a new value. In the 6502, branching is controlled by a
set of one-bit registers called flags. The important flags for branching are given the symbolic names N, V, Zand C by
6202 programmers. They are known as the negative (N), overflow (V), zero (Z), and carry (C).flags.

Flags are set (to 1) and cleared (to @) by the action of instructions. In fact, programmers need to know how each
instruction affects the flags. Look at the Figure 8.1 summary of the 6502 move instructions. The letters at the right
indicate when the corresponding flag is affected by the instruction. If you know that an operation affects a certain
flag, you’ll know whether it sets or clears the flag, because flags have consistent, easy-to-learn meanings. Interpret
the N, V and Z flags as follows:

N = 1 means the result is negative (Q means positive or zero)
V = 1 means the result is invalid (more about this later)

Z = 1 means the result is zero

) .
The carry flag represents the carry bit or some other one-bit extension of the result. As we go lhrough more of the
instruction set you will see how useful the carry bit extension is. .

MNEMONIC EXPLANATION OPCODE ADDRESS MODE
BCC Branch if carry is clear (C = @) 90 Relative
BCS Branch if carry is set BO Relative
BEQ Branch if equal (Z = 1) : FQ Relative
BNE Branch if not equal (Z = @) DO Relative
BMI Branch if minus (N = 1) 30 Relative
BPL ' Branch if plus 10 Relative
JMP Unconditional jump 4C - Absolute
A T e T T e Gg Indirect
e A ST IIRTATE TABE R
S oAEOH L #
ST ADDRESS MODE
e BB AETS ORI T - Wb’»‘ﬂ"mswﬁ =
by g s You sl T2 TVl STHRIZeE o 9 S
- ) = - 4] — 4]
/cec:/f _42;'5_@. ffﬁéﬁ)ﬁﬁeﬂ vo § 2 4 x x4 . >
. £ @ o g © o » 17}
“MNEMONIC ~ EXPLANATION ( E § 8 £ £ 8 § % FLags
CMP Set flag by A — Memory COl CD | C5 | C1 D1 D5 | DD | D9 N,Z,C
CPX Set flag by X — Memory EQ | EC | E4 N,Z,C
CPY Set flag by Y — Memory Cp | CC | Ca N,ZC

AP LG = TEAC - T/E Figure 10.1 65@2 Branch and Compare Instructions
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Figure 10.1 summarizes the 6502 branch instructions. The conditional branch instructions check for a particular
flag condition and loads the program counter if it is met. If the condition is not met, no branch occurs. The program
counter simply advances to the next opcode. The conditional branches use the relative address mode. In this mode,
a full effective address is loaded into the program counter with a new value formed from a single byte following the
opcode. This is done by adding a single byte, the displacement byte, to the program counter. A negative instruction
byte allows the processor to branch backwards in the program, as you can see happening in ‘‘good listener.”” More
details on relative addressing will come up in the next section. .

The mnemonic JMP is used for an unconditional branch or jump. No flag testing is involved and the branch is
taken every time. Absolute, rather than relative, addressing mode is used. For an example, see “‘good listener.”
The absolute address #@PD would have to be changed if “‘good listener’” were moved to some other location in
memory. It should always be the address of the instruction with the label REPEAT. If the symbolic program were
given to an assembler program, the label REPEAT would be assigned the address as a numerlcal value. If the assem-
bler is told where “‘good listener’” is to be placed in memory, it will know the absolute address for the JMP instruc-

_tion. The Monitor’s machine code provides a good illustration of the JMP indirect mode shown in Figure 10.1. In

indirect addressing, the address provided by the instruction is used to fetch the address of the operand. In the case of
the JMP, the operand is the jump destination; the address to replace the program counter. When you depress the
‘G’ key, the Monitor branches to the machine language instruction 6C FE @0. Can you figure out what is in locations
PPFE,¢ and @PFF ¢ when the Monitor is running? Elementary, my dear Watson. The answer is on page 23.

Some instructions are devoted to setting flags and do nothing else. The are called ‘‘compare’” instructions. In the
6502 instruction set, compare instructions subtract a memory byte from the contents of a processor register and set
the flags according to the result, leaving the operands unchanged. The 6502 compares are included in Figure 10.1.
Many decisions represented by diamond boxes in flowcharts are 1mplemented by a compare instruction, followed by
a conditional branch.

When the distance between a branch instruction and the intended branch destination is too great for one byte, the
JMP instruction with its abselute address mode can come to the rescue. For example, in

CMP #
BEQ AWAY,

if the location represented by AWAY is too far away, requiring too large a value for the displacement byte after the
opcode F@, then use

CMP #
BNE SKIP
JMP AWAY

SKIP

There are all sorts of interesting variations to be made in ‘‘good listener,” based on recognizing a particular
character as a command. For example, one could have ‘‘good listener’” return to the address mode of the Monitor
on command. In the Monitor you could change the location or length of the display line, then restart ‘‘good
listener.” This version could be used to compose character pictures on the screen. For your JMP into the Monitor,
FE43, is a good address, but remember to reverse the bytes. For the compare instruction to recognize the new
command you’ll need the ASCII code for the command’s key. If necessary, you can call upon the binary display pro-
gram of Section 4, or consult the appendix.

Another idea is to have ‘‘good listener’’ advance the display area to a new line, all by itself, on command. After
all, the line location in the program is in RAM when the program is loaded and can be treated as variable data.

When making a change in a program, the insertion of instructions changes the location of instructions following
the insertion point. Most instructions are not affected by such relocations, but some are. Absolute address mode in-
structions may have to be adjusted. In relative addressing, any insertion or deletion between a branch instruction
and its branch destination effects the displacement byte following the branch opcode. Watch your step when making
changes. Bugs are easier to prevent than to find.

When executing in a box with the program of Figure 9.1, you can follow the changes in the flags. The program re-
stores and saves all flags in location @QFp ¢, in the binary format '

7 6 5 4 3 2 1 0
N-| Vv | y4 C
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For example, if the Monitor command .@@F@ displays A6 in the data display, then the binary code:
1010 0110 '

revealsthat N =1, V=§ 7Z = 1, C = @ at that point.

*Answer: @OFE 0QFF contain the display address. '
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SECTION 11
A TOTAL MYSTERY

How about a little challenge? Load the following program, double check the loading and étart the execution.
LOCATION PROGRAM

P00/ - D8*A9*@@*85* FF*85°FE*85"
2008 FC*2¢*ED*FE*C9*2B*D@" 09"
0010 AS*FE*18"65"FC*50"36" 70"
0018 @B*C9*2D"D@*24*38*A5*FE*
0020 E5*FC*50*29"A2"(¢3*B5* 54*
p@28 9D*D@*D@*CA* 19°F8* 20*ED*
- 0030 . FE*C9*@D*D@*F9*A2* 03" A9"
" 0038 20"9D*D@* D@*CA*10*FA*30*
0040 C@*20*93*FE*30*C3*A2" 00"
@048  20"DA"FE*50*@2*85'FE*20"
0050 ~ AC*FE*D@*B5*54*49*4C*54
0000 G

Now key-in data and try to discover what the program does. Here are vital clues: the program reacts only to the
hexadecimal digits @-F, the signs ‘+’ and ‘=", and the ‘RETURN’ key. The ‘RETURN’ key is ignored at one point
but is vital at another.

You will find an.explanation of the program, starting on the next page, but don’t spoil the fun by peeking. Try all

sorts of input, watch and record what happens, make guesses and test them. There is a special message which can
appear but it goes away. The program loops forever.
. Bumfuzzled? If so, here is some information that may clear things up. Do the results you cannot explain involve
data having a left hexadecimal digit of eight or greater? To the 6502 processor, such binary codes represent negative
numbers. Try starting with a zero and subtracting a positive value, one that reads $7F (a *‘$”’ preceding a number
indicates hexadecimal) or less. The result represents the negative number of the same size. Perhaps now you can
explain everything the program is doing, before looking at the flowchart of Figure 11.1, which revals all. Try to
determine the largest positive sum and the smallest negative sum that can be obtained.

There are many ways to represent negative numbers in binary codes. For binary integer arithmetic, most com-
puters use the system that the 6502, the one illustrated by the mystery program. It is called two’s complement repre-
sentation. To change the binary representation of a number to the two’s complement negative, you first change
every bit to its opposite value. This is referred to as complementing the bits. Then add 1 (one) to the result. Since
the process amounts to changing the sign of a number, repeating it should produce the original binary code. Does it?

Two’s complementing can be done directly in hexadecimal. Replace each hex digit by a complement digit that you
obtain by subtracting the original digit from 15,y. This does the complementing. Then add 1 (one) to the result.

Trace through the flowchart of Figure 11.1 and try out any parts you did not get into with your blind exploration of
the program. The flowchart shows something important about two’s complement representation. There are no tests
in the algorithm to determine the sign of the data values. With two’s complement representation, positive and nega-
tive values are processed in exactly the same way.
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BINARY MODE

LL=0
DD=0

READ
KEY

LL=LL+DD

‘ \ "
OVERFLOW ? ,

DISPLAY /

“TILT” /

ERASE [

7 KEY

“RETURN” ?

“TILT” / h

YES

Figure 11.1 Flowchart for “Total Mystery”
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Did you get the ‘TILT’ message? It appears when the overflow flag is set by the add or subtract operations. In
either case, the message means that the correct result cannot be represented in one byte.

Now that we have reached two’s complement, we can understand the 6502 backward branches in relative address-
ing. In the Figure 7.3, coding of ‘‘good listener,” the test for the end of the loop is

BNE FILL

The reference to the label FILL is assembled as $F5, the two’s complement representation of a negative displace-
ment. In the execution of the instruction, the program counter is first advanced to $09@D, then the negative byte
$F5 is expanded to a 16-bit representation of the same number and is added to the updated value of the program
counter to produce

000D,
_ $0000D
+FFF5, or  +$FFF5
P002,¢ $0002

as the branch destination. The addition is ordinary garden-variety binary addition whether the displacement is nega-
tive or positive. Does the backward branch to MOVE work the same way?
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SECTION 12
A LOOP YOU CAN COUNT ON

In the *‘good listener’’ code of Figure 7.3, there are three loops. One pair of loops is nested, one within the other.
Two of good listener’s loops are controlled by counters to execute a prescribed number of times. The index register
X is used as the loop counter within each of these counting loops.

Figure 12.1 shows the usual arrangement of the parts of a counting loop. The body of the loop is the part that is re-
peated. It is a set of instructions that may contain other loops. The loop counter is given an initial value outside of
the loop. Within the loop it is incremented or decremented until it reaches some test value. The test value may be a
constant or a variable, depending on when the number of times through the loop is determined.

INITIALIZATION

Y

BODY

ol —

INCREMENT

TEST

Figure 12.1 Parts of a counting loop

Many a program bug has hatched when the programmer forgot to initialize the loop counter or chose the wrong
test value or branch instruction, causing the loop body to be executed the wrong number of times. A wise precau-
tion is to double check immediately after coding a loop to see what values the loop counter will have on the first and
last executions of the body. If undetected, this kind of bug crawls off into some other part of the program and causes
something apparently unrelated to go awry. A good way to save yourself a lot of effort looking for bugs of this type is
to make it a practice to play processor with a new program, going through it instruction by instruction, calculating
the changes that take place and looking for surprises. Programmers call this desk checking because it is done at the
desk and not on the computer. You can play processor with ‘‘execute-in-a-box.”

The 6502 instructions for incrementing and decrementing are shown in Figure 12.2. The index registers X and Y -
make the best loop counters, but a way is provided to use a memory cell as a counter as well. The reason is that with
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loops nested within one another, so that several are repeating at one time, an index register would not be available

to control each loop. X and Y are preferred as loop counters, primarily because of their ability to access data through

indexing. As loop bodies are repeated, the algorithm is often moving through blocks of data in a systematic way.

Why do you suppose that increment and decrement instructions are not provided for the accumulator? Generally, it

would be occupied with something in the body of the loop and not be available as an index register or loop counter.
ADDRESS M>?DES

. &8 3 3
5 8 a 3
? o o 2
MNEMONIC EXPLANATION < 3 S G FLAGS.
DEC Decrement memory by 1 CE C6 D6 DE N,Z
INC Increment memory by 1 EE E6 F6 FE N,Z
DEX Decrement X by 1 CA Implied N,Z
DEY Decrement Y by 1 88 Implied NZ
INX Increment X by 1 EB Implied N,Z
INY Increment Y by 1 cs8 implied ' N,Z

Figure 12.2 Counter Increment and Decrement Instruction

You probably noticed that the increment and decrement instructions affect the flags N and Z. This makes it possi-
ble to detect when a loop counter reaches a zero or negative value without a compare instruction. When you have a
choice, it may be better to count backwards to take advantage of this feature. As an example, look at the program of
Figure 12.3 which displays all the graphic symbols with a given high (left) hexadecimal digit in their codes. With this
program you can rapidly survey the graphic symbols available to your computer.

; USER KEYS HEX DIGIT, D, PROGRAM DISPLAYS ALL GRAPHICS, DK
; WHERE K IS A HEX DIGIT

0000 20 ED FE BEGIN JSR  S$FEED ; GET A KEY

P003 - 20 93 FE JSR  $FE93 ; STRIP TO HEX DIGIT

o006 30 F8 . BMI BEGIN ; IGNORE NON-DIGITS

P008 0A ASL A

0009 A ASL A

PO0A QA ASL A

P00B DA ASL A

PeppC 85 1B STA TEMP ; SAVE

0003 A2 OF LDX  #15 ;  INITIALIZE COUNTER

2010 B8A LOOP TXA ; COUNT TO A FOR LOW DIGIT
9911 @95 1B ORA TEMP ;  APPEND HIGH DIGIT

0913 9D 46 Dt STA  $D146,X ; STORE IN DISPLAY LINE
9916 CA DEX ; INCR, TEST

o917 19 F7 BPL LOOP . . DISPLAY LOADING

0019 30 E5 BMI BEGIN ; WAIT FOR ANOTHER INPUT
o018 TEMP
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To enter this program, type:
0009 / 2¢*ED*FE*20*93*FE*30*F8*
QA"DOA*DA*DA*85*1B*A2*OF*
8A*@5*1B*9D*46*D1*CA*19*
F7*30°E5—*—.
The blanks at $801B are determined by where you locate TEMP. For example, to locate TEMP at $D4@@, put #0 and

D4 in the blanks.
' START ’

KEY-IN

NO

YES

SHIFT TO LEFT
A STA

X - 15

FORM, STORE

LLLL, X GRAPHICS
S OR X CODE

NO

YES

Figure 12.3 A graphics display program
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In the algorithm, it doesn’t matter which order the graphic codes. are loaded into display locations, so they are
loaded right-to-left, decreasing order. The BPL instruction allows a repeat of the body of the loop with X = §. A
BNE instruction would make the X = 1 iteration the last. The BMI instead of the JMP is a trick to save a byte of pro-
gram. TEMP is assigned a byte at the end of the program instructions.

If you are looking for a programming challenge involving counting loops, you could attempt a program to produce
the same output as this one, but with the displayed symbols arranged in a table of four rows by four columns, with
single blank spaces between all of the symbols.




SECTION 13

A STACK OF LETTERS.

Beware. You are in Section 13. To avoid bad luck while in this section, spell ‘abracadabra’ backwards. Use the pro-
gram of Figure 13.1. This program will save a word in memory without letting you see it until you depress the space
bar. Then it moves the word into the display area in reverse order. Without modification, the program allows up to
256 characters in an input word.

0000
2002
2004
0007
P0P8
POOA
?00D
PO0F
2011

o012
P013
2015
o017
2018
201B
P01C
?91D
P01F
9922

A2
A9
aD
CA
D@
20
co
Fo

E8
DO
AD
68

29

c8
CA
DO
20

4C

;BACKWARDS SPELLER: ENTER A WORD, FOLLOWED BY A BLANK.

;THE WORD THEN APPEARS, BACKWARDS.

;TO ERASE, PRESS ANY KEY, THEN START A NEW WORD.

’

40
29
45

FA
ED
20
04

F5
o0

F8
ED
00

D1

FE

D1

FE
o0

GO
GO
BLA

BUILD

DUMP
POP

LDX
LDA
STA
DEX
BNE
JSR
CMP
BEQ
PHA
INX
BNE
LDY
PLA
STA
INY
DEX
BNE
JSR
JMP

#64
#C'
$D145X

BLA
$FEED
#C'
DUMP

BUILD

#0

$D146Y

POP

$FEED
GO

1

LONGEST WORD
BLANK OLD WORD

TEST LEAVES X=9
GET A LETTER

IF A BLANK

WORD ENDS

IF NOT, PUSH IT
COUNT PUSHES
RETURN FOR ANOTHER
INDEX FRONTWARDS
POP A LETTER

SPELL IT OUT

NEXT LETTER POSITION
COUNT POPS |

DELAY BLANKOUT UNTIL NEXT KEY
IS PRESSED ON RELEASE, REPEAT

Figure 13.1 The Backwards Speller

This little trick can be coded a number of ways on the 6502, but our program uses a feature of this processor that
we have not yet considered, the stack pointer. A stack is a type of data structure, an arrangement of data that pro-
vides access to an item of data in a particular way. The stack provides last-in first-out (LIFO) access, meaning that it
makes available one item at a time, and the available item is the latest one that was placed on the stack. Take that
item from the stack and the prev:ously entered item becomes available.

In computer terminology, the available item is called the top of the stack. The operation of placing an item on the
stack is a push; removal of an item is a pop or a pull. The backwards speller pushes characters on the stack as you
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enter them, then pulls them all when it sees a blank. They come out in reverse order.

In the 6502, each item on the stack is a byte of information. The data on the stack is not kept in the processor but
in memory. The processor has a one-byte register called the stack pointer, S. The stack pointer contains the location
of the top of the stack. A value of 1 (one) is always used as the page number in stack operations, so the stacked data
is always contained in page one of memory (the second block of 256 bytes). A push involves writing the byte into
the page one memory byte specified by the stack pointer and decrementing the stack pointer. A pull involves incre-
menting the stack pointer and reading the byte from the page one memory byte specified by the stack pointer.

Figure 13.2 shows several 6502 stack instructions. The first group is used to access the stack. In the second group,
the TXS instruction is the means provided to set the stack pointer to its initial value. In your system, the Monitor
has taken care of that, so a TXS need not appear in your programs. Whenever a program uses the stack, it should
pull from the stack just what it pushed, no more and no less. This leaves the stack in its beginning state. The back-
wards speller uses a loop counter to see that this is done.

MNEMONIC EXPLANATION OPCODE ADDRESS MODE FLAGS
'PHA  Push A onto the stack 48 Implied None
PHP‘ Push flags onto the stack 98 implied None
PLA  Pull from the stack into A 68 Implied N.Z
PLP Pull from the stack into flags 28 Implied All
TSX Copy' stack pointer into X BA Implied N,Z
‘TXS ' Copy X into stack pointer 9A implied None

Figure 13.2 Explicit 6502 Stack Operations

The *‘execute-in-a-box’’ program of Section 9 takes advantage of available stack operations to keep track of
changing flags. The set of flags is considered collectively as a register, P, which can be pushed or pulled from the
stack. That represents the 6502’s only access to the flags as a group. Once on the stack, a pull into the accumulator is
a means of transferring the flags to a memory cell for your inspection.

You are allowed to use push and pull operations within the ‘‘execute-in-a-box’’ program because the segments of
the program before and after the box leave the stack as they found it. The TSX instruction is used after the contents
of X' have been saved, to allow you to follow changes in the stack pointer contents. :
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‘SECTION 14
IT’S THE SAME OLD ROUTINE

You must have noticed the same instruction occupying an important spot in ‘‘good listener,’’ the graphics display
and backwards speller, namely

JSR $FEED

From the remarks in the programs, the effect of the instruction appears to be to put the ASCII code for the next key
depressed into the accumulator. Have you tried executing this instruction in a box yet? When you put the code 20
ED FE in the box and execute the program, there is no return to the Monitor, as usual. That is, not until you
. depress a key and release it. It’s an extraordinary instruction that can make the processor wait around all day until
you depress that key, isn’t it? -
To tell the truth, the JSR doesn’t do all this. Rather, it branches to a sequence of instructions that does. The set of
instructions is called a closed subroutine or simply, a subroutine. The processor begins to execute code starting at
$FEED, continuing until it encounters the opcode $6@. (RTS) Then, magically enough, it branches right back to the
- instruction following the JSR instruction. With this information and the help of Figure 14.1, you can do some detec-
tive work and figure out what the subroutine at $FEED really does.
Figure 14.1 is a disassembly table. Take the hexadecimal code in a location and select a row in the table by the left
digit and a column by the right digit. If the code is an opcode, the row and column intersection will show the opera-
tion and the addressing mode. What makes it fun is that now you must find which bytes represents the next opcode,
and the correct interpretation of the bytes in between. Happy hunting!
Where the subroutine at SFEED appears to be reading a memory location, it is not a memory. locatlon atall. It is
what is called a port, a’connection to an input or output device. In this case, it is an input device, the computer’s
keyboard. There is a signal transmitted to the port when a key is depressed. When all keys are released, the data re-
ceived through the port is loaded into the accumulator.
A program containing a JSR is said to call the subroutine starting at the branch address in the instruction. The JSR
makes provisions for returning the processor to the calling program. It does so by pushing the value contained in the
advanced program counter onto the stack before replacing it to execute the branch. The pushed address is called the -
return address. A subroutine may contain any number of return instructions, written as a mnemonic RTS in the
symbolic form of the subroutine. When the RTS ($6f) is encountered, the return address is pulled from the stack
into the program counter producing the branch to the point immediately after the JSR instruction.
When are subroutines useful? Primarily, when the same processing is needed in more than one place. ‘‘Good
listener,” for example, reads the next key-in in two places. The single copy of the processing code is executed
wherever it is needed. Subroutine calling is an important feature that multiplies the power of computer systems.
Collections of subroutines can be built to carry out frequently used functions in users’ programs.
 Figure 14.2 describes some of the subroutines in the Monitor. The display subroutine at SFEAC can be used to
make an improvement in ‘‘execute-in-a-box’’ without adding much to its length. When storing register contents in

$PPFQ through $OPF4, also store key register contents in $0QFC, $OPFE and $0PFF. Or, replace a key memory loca-
tion in the simulated program by one of these addresses. When ‘‘execute-in-a-box’’ returns to the Monitor, a call to
$FEAC is the first instruction executed, so the display of desired trace data is automatic.
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ENTRY
$FES3

$SFEAC

$FECA

$FEDA

$FEE9

EFFECT
REGISTERS

A

AXY

AY

AY

EFFECT .

Replaces ASCIl hexadecimal dlglt with its binary
value, N=0

If not a digit, returns $8@ and N=1

Displays as hexadecimal digits LLLL DD the contents
of @PFF and PPFE (LLLL) and @@FC (DD)

Stores the ASCII code for the right hexadecimal digit
Ain LLLL)Y and increments Y by 1

Shifts right digit of A into @@FD,X and @@FC,X as
shown. Clears A)Y.

Get next ASCII character from keyboard or UART,
depending on location @QFB

Figure 14.2 Some Useful Monitor Subroutines
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SECTION 15
EXTENDING THE MYSTERY

It’s time to come forward with the whole story on the ‘‘total mystery’’ program of Section 11. Since ‘‘total mys-
tery”’ calls many monitor subroutines, it seemed only right to keep its workings under wraps until the subroutines
were explained. Now Figure 15.1 exposes all of total mystery’s secrets.

2000
0001
?903
P005
o007
009

ooeC’

P00E
0010
- 9012
0013
0015
0017
0019

001B

@@1D
. 001E
0020
0022
0024
0026
0028
0028
092C
PQ2E
@31

D8
A9

85
85
20

" C9

Do
A5
18
65
50
70
C9
Do
38
A5
ES
50
A2
B5
9D
CA
10

29

Cc9

00
FF
FE
FC
ED
2B
09
FE

FC
36
9B
20
24

FE
FC
29
@3
54
Do

F8
ED
oD

;TOTAL MYSTERY

’

BEGIN

CLD

REPEAT __ LDA

FE GET

NEG

TILT
MLP
Do

FE WAIT

#0
$FF

$FE

$FC
JSR~———$FEED
CMP ~ #$2B
BNE NEG
LDA $FE
CLC
ADC $FC
BVC STORE
BVS TILT
CMP #$2D
BNE DIG
SEC
LDA $FE
SBC $FC
BVC STORE
LDX #3
LDA MESS,X
STA $D@DG, X
DEX
BPL MLP
JSR $FEED
CMP #$0D

36

CLEAR DECIMAL MODE
CLEAR LLLL, DD DISPLAY

GET KEY

A'+?

NO, TEST FOR MINUS

FOR

YES, CLEAR CARRY

ONE-BYTE ADD

NO OVERFLW, STORE AND DISPLAY

A'—'?
NO, TEST FOR DIGIT

SET CARRY

ONE-BYTE SUBTRACT
NO OVRFLW, STORE AND DISPLAY

WRITE MESSAGE TO DISPLAY

WAIT FOR RETURN KEY




9033
P@35
0037
9039
P@3C
9@3D
PP3F
P41

0044
PP46
P048
004B
994D
004F
o052
0054
P056

Do
A2
A9
9D
CA
10
30
20
3¢
A2
29
50
85
20
Do
54
4c

F9
@3
20
DO

FA
co
93
C3
o0
DA
92
FE
AC
B5
49
54

D@

FE

FE

FE

BNE

ERASE

DIG

STORE
DISP

MESS

WAIT

LDX
LDA

STA

DEX
BPL
BMI

JSR
BMI

LDX
JSR
BVC
STA
JSR
BNE

.BYTE

#3
#$20
$DPDG,X

ERASE
REPEAT
$FE93
GET
#0
$FEDA
DISP
$FE
$FEAC
GET
TILT

CLEAR MESSAGE

STRIP TO DIGIT
IF NOT A DIGIT, IGNORE

ROLL DIGIT INTO DD

STORE RESULT IN LLLL+1
DISPLAY LLLL DD, CLEAR Z

Figure 15.1 The Total Mystery Program

The heart of ‘“‘total mystery’’ is the add and subtract instructions ADC and SBC. Since they are the basis of all
arithmetic processing on the 6502, an ample set of addressing modes is provided for these instructions, as seen in
Figure 15.2. Addition and subtraction are carried out in the 6502 by loading the accumulator, then.using ADC or
SBC to form the sum or difference in the accumulator. The carry flag gets in on the act: ADC sums accumulator,
operand byte and carry flag. SBC subtracts the operand from the accumulator and adds in the complement of the car-
ry as a “‘borrow.”” To get a correct one-byte addition, you must make sure that the carry flag is cleared beforehand.
An instruction CLC is available to do this. It was not necessary in ‘‘total mystery’’ because the compare instruction
at $0P1C clears the carry flag so that no borrow is assumed. The SEI instruction of Figure 15.2 serves that purpose.

ADDRESS MODES

MNEMONIC EXPLANATION

ADC
SBC

cLC
SEC

Add with carry

to accumulator

Subtract with carry

from accumulator-

Clear carry flag

Set carry flag

E o S x>

8 O 0] —_ ) O

T 3 & % = & 3 3

£ S o g T o 2 2 FLAGS

E 2 8§ & & § £ 1% '

= © AFFECTED
69 | 6D |65 |61 |71 | 75 | 70 | 79 NZCV

EQ |ED | E5 | E1 | F1 | F5 | FD | F9 NZCV

18  Implied CcC=0

38 Implied C=1

Figure 15.2 Add and Subtract and Carry Flag Set Up

The reason for involving the carry flag in ADC and SBC is to enable addition and subtraction to bé extended to
numbers larger than one byte. Starting at the rightmost byte of the numbers, the value of C, resulting from each
addition or subtraction represents the carry or borrow required into the next byte to the left.
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FE

FC

I+

FE

Replace ADC $FC at @913 with:
913 90 43
and add to the end of the program (8958):

#0958

PO5A

?@5C
P@5E
0060

65
85
A5
65
4C

Replace SBC $FC at #9020 with:
0020 BO 41
and add to the end of the program (9963):

9063
0065
0067
0069
006B

ES
85
A5
ES
4C

and change STA $FE at 94D to

004D 85 FF
Figure 15.3 Extending Total Mystery to Two-Byte Arithmetic

FF___.FE
FD FC
is to be
replaced
by -
FF FE
BCC
FC ADD2 ADC
FE STA
FF LDA
FD ADC
15 00 JMP
BCS
FC suB2 SBC
FE STA
FF "LDA
FD SBC
22 09 JMP
STORE STA

ADD2

$FC
$FE
$FF
$FD
$0015

SuB 2

$FC
$FE
$FF
$FD
$0022

$FF

Figure 15.3 shows how to extend the “‘total mystery’’ program to two-byte arithmetic. The carry produced by
adding $POFE and $#@FC contributes to the sum of $PPFF and $@0FD. The overflow flag has meaning only when
the most significant, or leftmost, bytes of the numbers have been processed. The arrangement of the numbers in
memory may not seem very natural to you. It is done this way in order to make use of the Monitor subroutines at
$SFEAC and $SFEDA. A more natural arrangement is illustrated in the subroutines of Figure 15.4. Can you assemble

machine language versions of these routines?




3

; WORKS FOR N UP TO 8.
; CALL WITH X=N-1. AFFECTS A.

; ADD INTEGERS IN BYTES LONG, STARTING AT $E@ AND $E8

18
B5
75
95
CA
10
60

18
75
%
CA
A9
BO
60

ADDN CLC

EQ "~ ANLP LDA $E®,X
E8 ADC $E8X
EQ STA $E@,X

DEX
F7 BPL ANLP

RTS

’

; UNSIGNED ADD, OF A TO N-BYTE ACCUMULATOR AT $E®
; CALL WITH X=N-1.

ADD1 CLC
EQ  AILP ADC $E@X
EQ STA SE@X
DEX
00 LDA #0
F7-  BCS AILP
" RTS

Figure 15.4 Two Subroutines for N-Byte Addition
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SECTION 16 -
BIT BY BIT

The 6502 processor can address bytes, but not bits within a byte. Two groups of instructions handle information at
the bit level: shift instructions move bits to where they are needed, and bit logical instructions operate on bits indi-
vidually.

6502 shift instructions are illustrated in Figure 16.1. The byte contents of the accumulator, or a memory cell, can
be shifted one bit position, left or right. The carry flag acts as an extension of the shifted byte, receiving the bit value
shifted out of the byte. The ASL and LSR instructions bring a cleared bit into the opposite end of the byte. The
rotate instructions bring in the previous value of the carry flag. Generally, “‘arithmetic’’ shifts are those that pro-
duce multiplication or division by two, for both positive and negative values. Since shifting right to divide by two
would not work for two’s complement negative values, the right shift is called a logical shift rather than an
arithmetic shift.

ADDRESS MODES
S
| 22>
S |la| E| Y] x
o o : m -
. » o (&) o g
DIAGRAM MNEMONIC | 2 | 3 | & | N | £ | FLAGS
C -
D__ __@' ASL OE | 96 [ @A | 16 | 1E | NZC
— C
D~ _,D LSR 4E | 46 | 4A | 56 | 5E | N=0,Z,C
C —_—
|;|—— —I ROL 2€ | 26 |2a|36| 38 | NZC
-~ C
|_ ._D ROR 6E |66 |6A | 76 | 7E | NZC

Figure 16.1 Shift instructions

The binary display program of Section 4 is based on shift instructions, using them to extract and use one bit of the
displayed value at a time. The symbolic form is shown in Figure 16.2.

40




20
85
A9
A2
oD
66
3E
CA

10
30

Fo
18
@7
D2
FO
D2

F5
EA

. BINARY DISPLAY PROGRAM OF SECTION 4
ED FE LOOP JSR

STA
LDA
LDX

Dg OuUT STA

Do

ROR
ROL
DEX

BPL
BMI

$FEED
$FQ
#$18
#7

$DOD2X ;

$FO

$DPD2X

ouT
LOOP

1

y

GET A KEY
SAVE IN $FQ
HEX 3@, SHIFTED RIGHT

SET UP DISPLAY CELL
GET NEXT BIT

‘SH'IFT BIT IN, PRESERVE CARRY

Figure 16.2 Binary Display Program

A logical shift right in the accumulator is central to the subroutine of Figure 16.3. This subroutine could prove
useful in many places. For one, use it to improve ‘‘execute-in-a-box’’ so that it displays the flags, X, Y, A and S au-
tomatically. You can put the subroutine anywhere without changing any code. Subroutines with this property are
called relocatable. The key to writing relocatable subroutines is to avoid absolute or zero page addressing modes ref-
erencing bytes within the subroutine. '

85
B5
4A
4A
4A
4A
20
B5
20
EA
E8
C6
D@
60

FF
00

CA

00
CA

FF
EC

FE

FE

HEXTV STA
LOOPH LDA

LSR
LSR
LSR
LSR
JSR
LDA
JSR
NOP
INX

DEC
BNE
RTS

$FF
$6,X

A

A

A

A
$FECA
$0,X
$FECA

$FF
LOOPH

; USES $FF FOR COUNTER

; HEX DISPLAY OF ZERO PAGE BINARY CODE STARTING AT X
; DISPLAY STARTS AT $D@C6,Y
; NUMBER OF BINARY BYTES IN A

BINARY BYTE COUNTER
GET BINARY BYTE

SHIFT LEFT HEX DIGIT
TO RIGHT DIGIT

ASCII TO $D@C6,Y; INCﬁEMENT Y

GET A FRESH COPY

RIGHT DIGIT ASCII T@ $D@C6,Y AND INC Y
FOR GAP BETWEEN BYTES, INSERT INY HERE
ADVANCE IN BINARY INPUT

COUNTING INPUT BYTES

Figure 16.3 Binary to Hexadecimal Disptay Subroutine

Normally you would put a subroutine somewhere beyond the first two pages of memory. Zero page locations are
too valuable because any data in the zero page can be addressed with a single byte in the instruction. The stack
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occupies page one of memory. - : ‘ -
What happens when register Y is mcrememed beyond 25510 or FF]6‘7 It jUSI starts over, right? You can take

advantage of this to display several lines in ‘‘execute-in-a-box,”’ letting the active line do a ‘round robin’ progres-
sion over the display. :
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SECTION 17
IT’S VERY LOGICAL

In most computers the individual bits within addressable units are operated on by a technique known as masking.
A binary code called a mask selects the bits to be operated upon. The operations are called bit logical or simply, logi-
cal operations. Like most processors, the 6502 provides bit logical operations for selectively clearing, setting and

complementing bits. _

In the logical operations, each bit of the mask interacts with the corresponding bit of the operand in the same posi-
tion. The effects on operand bits are shown in Figure 17.1. The names AND and OR are rather universal names for
these operations. EOR is short for exclusive or. The AND operation clears all bits in the operand selected by §’s of
the mask. The OR sets all bits selected by mask 1’s, while the EOR complements them. Figure 17.2 covers the 6502
logical instructions and a special compare instruction (BIT) which uses the accumulator as a mask to select individu-

al bits for setting the zero flag Z.
As an example, if the accumulator contains

10101109, |
the instruction AND with 111109@@ produces 10100399 in the accumulator,
the instruction AND with #@9@1111 produces §P@@1100 in the accumulator,
the instruction ORA with 11110900 produces 11111100 in the accumulator,
the instruction ORA with §@@@1111 produces 10191111 in the accumulator,
the instruction EOR with 11119909 produces 1811109 in the accumulator,
the instruction EOR with §99@91111 produces 19100911 in the accumulator.

mask mask mask
1 o 1 2 1
o|lo|o 0| 0|1 0|01
operand
1101 1(11]1 ’ 11110
AND ' OR EOR
Selective Clear Selective Set Selective Complement

Figure 17.1 The Effect of Logical Operations
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ADDRESS MODES

b
e o o
o 2 < b
9 2 a < > a >
£ § °© - T 92 % @
MNEMONIC EXPLANATION E 8 8% £ £ 8 § € FLaGs
AND AND accumuiator and 29 2D | 25 21 31 35 3D | 39 N,2
memory mask
ORA OR accumulator and @9 | @D { @5 | @1 [ 11 | 15 [ 1D | 19 N,Z
memory mask . ,
EOR EXCLUSIVE-OR accumulator 49 | 4D | 45 | M1 51 55 | 5D | 59 N,Z
and memory mask
BIT - Test memory by accumulator 2C - Absolute Z =0.if A AND memory = @
mask 24 - Zero page = 1 otherwise

N = memory sign bit
V = next bit of memory

Figure 17.2 6502 Logical Instructions

Logical operations are important in many algorithms because they represent, very neatly, the combining of sets of
objects to form new sets. Imagine that we have devoted one bit to each object. Then a set of objects is represented by
a binary code in which ‘1’ means ‘belongs to the set.” Now the AND of two codes is the intersection of the sets, the
objects belonging to both. OR the codes to get the union of the sets, the set of objects belonging to oné€ or the other.
EOR produces the union but eliminates objects in both sets.

The Monitor subroutine starting at SFECA illustrates masking with logical instructions. It is called by the hex-
adecimal display subroutine of the last section. As Figure 17.3 shows, the subroutine constructs and stores the
ASCII code for a hexadecimal digit contained in the right four bits of the accumulator. With your improved “‘ex-
ecute-in-a-box,”’ trace through the routine with some typical input data and confirm its behavior.

; DISPLAY AT $D@C6,Y THE ASCII CODE
; FOR THE RIGHT NIBBLE OF A
; INCREMENTS Y

FECA 20 OF ASCIl AND #$@F ; REPLACE LEFT NIBBLE
29 30 . ORA #$39 ; BY 3
C9 3A CMP #$3A  :; WAS IT 9-9?
3 03 BMI STO  ; YES, NO ADJUST NECESSARY
18 cLc ;
69 07 ADC #7 . NO, ADD 7 FOR A-F ASCII
99 C6 D@ STO STA $D@C6EY ; STORE IN DISPLAY LOCATION
cs INY . ADVANCE TO NEXT DISPLAY LOCATION
60 RTS

Figure 17.3 Monitor Subroutine Featuring Logical Operations
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SECTION 18
HARDWORKING SUBROUTINES

Machine language programs take considerable effort to code and get working because they involve large numbers
of instructions. On the other hand, they are the most machine efficient form of program. A good way to increase the
power of a computer is to build a collection of machine language subroutines that can be combined in different ways
to form executing programs. Some subroutines do commonly useful tasks which can be used in many programs. In
writing such subroutines, it is important to keep them as general as possible. Avoid combining several processing
tasks together into one subroutine, restricting it to fewer situations.

There are many ways to provide input data and locations for output data for subroutines. Input data can be left in
processor registers. One example would be the Monitor subroutine at $FE93, described in Figure 14.2. The input
and output result are transmitted in the accumulator. Another useful example is the ‘time delay’ subroutine of
Figure 18.1, with input data left in register X. It passes time by executing an inner loop 256 times and repeating this
the number of times specified by X. Place calls to this subroutine in a program to slow-down the action, so you can
actually see something happening. If X is in use at the point of the desired delay, then you must save its contents
somewhere before calling ‘time delay’ and restore its contents afterwards. The location $89FD, which is wiped out
by the call to ‘time delay,” does not have to be initially set to any particular value before the call unless an exact time
is required. :

e,

; TIME DELAY OF ABOUT 2265.X CYCLES

. CLEARS $FD _
EA TIME NOP . EACH NOP ADDS 512 CYCLES TO THE LOOP
c6 FD DEC $FD . 256 TIMES, AFTER THE FIRST
Dp FB BNE TIME
88 DEX . COUNTS EXECUTED LOOPS
DO F8 BNE TIME | -

60 RTS _
: Figure 18.1 Time Display Subroutine

Another way of passing data to subroutines is illustrated in Figure 18.2. The address and length of the ‘scroll’ field
are placed in zero page locations. The LDA and STA instructions use an addressing mode called indirect indexed, in
which the instruction identifies the zero page location of the address of the scroll field, and the contents of Y are
added to form the effective address of a byte in the field. the scroll field address is a two-byte address which can be
changed to relocate the scroll field anywhere in the display. The scroll subroutine does a big part of good listener’s
task. See if you can rewrite ‘‘good listener’’ to use the scroll subroutine. Don’t forget to load appropriate values into
locations @QF8, @PF9 and PPFA.

- You can experiment with the time delay subroutine by loading it and inserting the instructions -

LDX #

JSR TIME

within the scroll subroutine’s loop. Remember to subtract five from the relative addressing displacement in
BNE SHIFT

to adjust for the insertion. Adjust the immediate value loaded into X for a pleasing ‘ripple’ effect as you enter data.
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AQ

c8

B1:

88

91 .

C8
C4
D@
68
91

60 .

; SHIFT DISPLAY FIELD LEFT STOREfA INJO@RIGHTMOST CHARACTER

; FIELD ADDRESS AT $F9 $F8 LENGTH 1AT $FA

; AFFECTS Y )
00 SCROLL 'LDY: #¢
PHA
SHIFT  INY
F8 . LDA ($F8)Y
| DEY
F8 STA (8F8).Y
INY
FA CPY S$FA
F5 BNE SHIFT
PLA
F8 STA ($F8),Y
RTS

" STRING POINTER

W e R

SAVE INSERT

I+1

MOVE (I+1) ST POSITION
I

‘TO ()TH POSITION

ADVANCE |
LOOP TEST VALUE

RESTORE AND
INSERT INTO RIGHTMOST

Figure 18.2 Character Scroll
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SECTION 19
TWO-WAY ARITHMETIC

Many computers can do decimal arithmetic directly, in addition to binary arithmetic. As you know, converting
numbers between the binary and decimal number systems is not so easy. A program that receives decimal data and
outputs decimal results, while doing all internal computations in binary, can have a lot of converting to do. Decimal
arithmetic, though not as efficient as binary arithmetic, can be better in many situations as an alternative to conver-
sions in both directions.
~ The 6502 processor has a switch that can be thrown to make add and subtract operations produce decimal, rather
than binary results. In this mode of operation, byte operands which are valid BCD (Binary Coded Decimal) inputs
are combined into valid BCD sums and differences, with the carry flag representing carries or borrows of ten. See
Section S to review BCD. Although a ten’s complement corresponding to the two’s complement does exist for the
representation of negative numbers, decimal arithmetic is usually done with positive numbers.

A decimal mode flag is the means of controlling the arithmetic mode of the processor and indicating which mode
the processor is in. One-byte instructions set this flag to enter decimal mode and clear it to return to binary
arithmetic. These instructions and the position of the decimal mode flag (D) in the P register which is pushed onto
the stack by the PHP instruction, are shown in Figure 19.1

MNEMON!C EXPLANATION OPCODE FLAGS
CLD Clear Decimal Mode Flag D8 D=0
SED Set Decimal Mode Flag F8 D=1

Figure 19.1 The Decimal Mode Flag

Decimal mode arithmetic can be explored by changing the first instruction in “‘total mystery’’ (original or your '
extended version) to an SED instruction. This makes the program execute in decimal mode. The Monitor clears the
decimal mode flag as it begins execution, but care must be taken when entering the Monitor at other points that the
decimal mode flag is cleared. '

You might enjoy the program of Figure 19.2, which requires several of the subroutines you have seen in previous
sections. The program converts decimal numbers to hexadecimal by using decimal arithmetic. Minor changes allow
it to convert decimal numbers to hexadecimal by doing the same operations in binary arithmetic. A necessary multi-
plication is carried out by adding repeatedly; not the most efficient method, but simple enough to make the two-way
arithmetic idea work. More efficient multiplication methods involving adding and shifting are spelled out in many
references. The bibliography at the end of this manual will lead you to specific methods and coded subroutines.

; DECIMAL-HEX CONVERTER:

4900 D8 START  CLD . CLD OR SED
4001 A9 20 REPEAT LDA #$20  : ASCII BLANK

4003 A® 00 LDY #0 . ZERO

L4005 A2 07 LDX #@7

.4007 9D C6 D@ CLEAR STA $D@PC6X ; CLEAR ENTRY FIELD
'400A 94 EQ STY $E@X  ; CLEAR ACCUMULATOR
| 4p9C CA DEX
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400D -10. F8 - BPL. CLEAR.

490F A2 E@  AOUT  LDX #$E@ = ; INPUT ADDRESS

4011 AD 4D . LDY #840  ; DISPLAY POSITION

4013 A9 08 LDA #$98

4915 20 — — JSR HEXTV ; ACCUMULATOR DISPLAY, FIG. 163

4918 20 ED FE JSR $FEED ; GET DIGIT |

401B 48 PHA . SAVE ASCII

491C 20 93 FE JSR $FE93  ; STRIP TO DIGIT, FIG 14.2

401F 10 03 BPL DIGIT  :; BRANCH IF DIGIT

4921 68 PLA . IF NOT, DISCARD IT

4922 50 DD BVC REPEAT ;

4924 48 ' PHA . SAVE STRIPPED FOR ADD

4025 A2 @7 LDX #7 |

4027 EA NOP . F8 SED - FOR HEX-DEC  *
4928 B5 EQ  COPY LDA S$E@X  : COPY FOR MULTIPLY

4027 95 E8 STA $EBX

492C CA DEX

402D 10 FO BPL COPY

402F AD @9  CNT LDY #9 . CHANGE #9 to#$F - FOR HEX-DEC  *
4031 A2 @7  MULT  LDX #7 . MULTIPLY BY ADDING

4033 20 — — JSR ADDN  : FIGURE 15.4

4936 88 DEY

4037 D F8 BNE MULT

4039 68 PLA . PULL STRIPPED DIGIT

403A A2 07 LDX #7 | .

493C EA NOP . D8 CLD ' . FORHEX-DEC  *
493D EA EA NOPs . C9QA  CMP #SA - FOR HEX-DEX  *
403F EA EA NOPs . 9p@2  BCC - FOR HEX-DEC  *
4041 EA EA NOPs . 6905  ADC #$5 - FORHEX-DEC *
4043 EA NOP . F8 SED - FOR HEX-DEC  *
apas 29 — — JSR ADDI  ; ADD TO ACCUMULATOR, FIGURE 15.4
4047 68 PLA . PULL DIGIT ASCII

4048 20 — — JSR SCROLL : ROLL INTO INPUT DISPLAY, FIG. 18.2
404B EA NOP . D8 CLD - FOR HEX-DEC  *
40AC 4C OF 40 JMP AOUT  : DISPLAY NEW ACCUMULATOR

* Make these changes to convert this program to a Hexadecimal-Decimal Converter.

Figure 19.2 Decimal-Hexadecimal Converter




The machine code addresses in Figure 19.2 assume the program is loaded into memory beginning at location
$4000. Actually it can be loaded anywhere in RAM, provided the absolute address in the last instruction is adjusted
to the location of the instruction labeled AOUT. This one dependence on the load address of the program can be re-
moved by replacing the last instruction with a conditional branch that is known to branch from the known value of
its flag. This strategy was followed in the instruction shown at $491F. '

Blanks occur in some absolute address positions in the program, corresponding to subroutine calls. The sub-
routines are those defined in this manual. You can load them anywhere in RAM and fill in their absolute addresses
(with reversed bytes) to make a complete program.

Adjusting a program to its loading location is called relocation. Flllmg in addresses to reflect the location of other
routines and data is called linking or resolving references. Many computer systems have a system program, called a
loader, which loads, relocates and links the user’s programs.

If you have trouble getting the routines to run please refer to Appendix K which contains completed listings.
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SECTION 20
'A SPARKLING FINISH

You have almost reached the end of this guide, but that is no reason to slow down in enabling'your computer to
do new useful and amusing things, through machine language programming.

We have explored almost every 6502 instruction, but there is an addressing mode we have not encountered. It is
called indexed indirect. In this mode, the index register X selects an address from a block of reversed-byte addresses
in the zero page. The starting byte of the block is designated by the second byte of the indexed instruction. In the
symbolic assembler language form the indexed indirect mode is indicated by an operand of the form.

(zero-page-address,X)

The indexed indirect addressing mode is useful for accessing bytes in random order rather than in increasing or
decreasing order. The program of Figure 20.1 illustrates the situation. Select a set of displayed cells scattered ‘ran-
domly’ around on the screen. List them in a block of reversed-byte addresses, not in any particular order. Load the
program somewhere beyond the block of addresses and load the ‘time delay’ subroutine (pg.45) along with it. Link
the ‘time delay’ into your program. Place the number of addresses in location $8@@1 and adjust the timing constant
for a pleasing effect.

In the sparkle program, the ‘stars’ stay off most of the time. To make a ‘twinkle, twinkle, little star’ version, re-
verse the star and blank characters $E8 and $20. -

; SPARKLING FINISH
; LOAD A TIMING CONSTANT FOR THE ‘ON’ TIME IN $00
; LOAD N INTO $01

; PLACE ADDRESSES OF SPARKLE DISPLAY POINTS IN LOCATIONS
$04$05 THROUGH 2N, 2N+1 IN REVERSED BYTE FORM

A6 @1  BEGIN  LDX 1 :
A9 E8 LOOP  LDA #$E8 . A'STAR'

81 02 STA ($02X) ; THE STAR APPEARS

8A TXA . SAVE FOR TIME

A6 00 DX @

20 — - JSR TIME . FLASH A STAR |

AA TAX . RESTORE STAR POINTER

A9 20 LDA #$20 : BLANK '

81 @2 STA ($92X) : TURN STAR OFF

CA DEX : _

CA | DEX . ; INDEX NEXT STAR LOCATION
D@ ED BNE LOOP  ; FLASH NEXT STAR

F@ E9 ‘ BEQ BEGIN ; CYCLE THROUGH STARS AGAIN

Figure 20.1 A Sparkling Program
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CODE
00
o1
02
@3
P4

05
06
07
08
09

@A
o8B
oC
@D
oE

@F
10
11

12
13

14
15
16
17
18

19
1A
1B
1C
1D

1E
1F
20
21

22

23
24
25
26
27

28
29
2A

APPENDIX A

ASCIl CHARACTER CODES

CHAR
NUL
SOH
STX
ETX
EOT

ENQ
ACK
BEL
BS
HT

LF
VT
FF
CR
SO

SI

DLE
DCH1
DC2
DC3

DC4
NAK
SYN
ETB
CAN

EM
sSuB
ESC
FS
GS

RS
us
SP

CODE
2B
2C
2D
2E
2F

30
31

32
33 .
34

-35
36
37
38
39

3A
3B
3C
3D
3E

3F
40
41
42
43

44
45
46
47
48

49
4A
4B
4C
4D
4E
4F
50
51

52

53
54
55

CHAR

. 51

+

-~ -

©CoOoO~NOOOMT dMWOWN—S

VoA

IOTMMO OWP»@E-~

cCH» DOUVEZ TrrxXC-—

CODE
56
57
58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64

65
66
67
68
69

6A
6B
6C
6D
6E

6F
70
71
72
73

74
75
76
77
78

79
7A
78
7C
7D

7E
7F

CHAR

xg<c~ ®"QOQTVTO 3I3I—x— —JTQ—-0 00T >—=~— N<Xs<

e AN

DEL



APPENDIX B
~ 6502 MICROPROCESSOR ARCHITECTURE

DB7 DBY
) \
! ! 8 —BIT DATA BUS
'
| ————— 8-BIT ACCUMULATOR
|
ALU INSTRUCTION /' 7 8 -BIT INDEX REGISTERS
8 BITS DECODING . ~
BINARY/ AND CYCLE A X
DECIMAL - ENCODING ~
Y ) — 9-BIT STACK POINTER
PROGRAM COUNTER |—16-BITS
\ .
] 2 v
NIVl [B|D]1|Z TIMING
AND CONTROL
LOGIC
A
! - , I
TIMING, PROCESSOR AB15 ABQ
CONTROL, AND ADDRESS BUS .
BUS SIGNALS
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APPENDIX C
6502 INSTRUCTION SET - MNEMONIC LIST

— ADC Add Memory to Accumulator with Carry
— AND *“AND”’ Memory with Accumulator
~ ASL Shift Left One Bit (Memory or Accumulator)

~BCC Branch on Carry Clear

~ BCS Branch on Carry Seg

— BEQ Branch on Result Zero

~ BIT Test Bits in Memory with Accumulator
—~ BMI Branch on Result Minus

— BNE Branch on Result not Zero

~ BPL Branch on Result Plus

—BRK Force Break

- BVC Branch on Overflow Clear
— BVS Branch on Overflow Set

—CLC Clear Carry Flag
— CLD Clear Decimal Mode

-~ CLI Clear Interrupt Disable Bit
“—CLV Clear Overflow Flag
— CMP Compare Memory and Accumulator

— CPX Compare Memory and Index X
" CPY Compare Memory and Index Y

— DEC Decrement Memory by One
— DEX Decrement Index X by One
DEY Decrement Index Y by One

— EOR “Exclusive Or’> Memory with Accumulator
- INC Increment Memory by Ohe
— INX Increment Index X by One
— INY Increment Index Y by One
— JMP Jump to New Location
— JSR Jump to New Location Saving Return Address

— LDA Load Accumulator with Memory

— LDX Load Index X with Memory

— LDY Load Index Y- with Memory

— LSR Shift Right One Bit (Memory or Accumulator)

— NOP No Operation

- ORA “OR” Memory with Accumulator
— PH_A Push Accumulator on Stack

— PHP Push Processor Status on Stack

— PLA Pull Accumulator from Stack
—PLP Pull Processor Status from Stack
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6502 INSTRUCTION SET - MNEMONIC LIST (CONTINUED)

-~ ROL
" _ROR
__RTI
~ RTS

— SBC
- SEC
~ SED
—SEI
- STA
— STX
— STY

_ TAX
~ TAY
- TSX
— TXA
~ TXS
~TYA

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory

Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

54




6502 INSTRUCTION SET - HEX LISTING

BRK
ORA-(Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ORA-Zero Page
ASL-Zero Page
Future Expansion
PHP
ORA-Immediate
ASL-Accumulator
Future Expansion

Future Expansion -

ORA-Absolute
ASL-Absolute
Future Expansion
BPL
ORA-(Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ORA-Zero Page,X
ASL-Zero Page,X
Future Expansion
CLC

"ORA-Absolute,Y

Future Expansion
Future Expansion
Future Expansion
ORA-Absolute, X
ASL-Absolute,X
Future Expansion
JSR
AND-(Indirect,X)
Future Expansion
Future Expansion
BIT-Zero Page
AND-Zero Page
ROL-Zero Page
Future Expansion
PLP
AND-Immediate
ROL-Accumulator
Future Expansion
BIT-Absolute

.AND-Absolute

ROL-Absolute

APPENDIX D

¥) 2F
4¢ 30
%4 31
46 32

- 33
éo‘) 34
5335
54 36
453537
5¢ 38

5739

£Z3A
£ 3B
¢ 3C
6/ 3D
5> 3E
3 3F
&< 49
¢s M
86 42
5743
&4 44
6 45
7046
77 47
7248
73 49
7Y 4A

79 4F

Future Expansion
BMI
AND-(Indirect),Y
Future Expansion
Future Expansion
Future Expansion
AND-Zero Page,X
ROL-Zero Page,X
Future Expansion
SEC
AND-Absolute,Y
Future Expansion
Future Expansion
Future Expansion
AND-Aboslute,X
ROL-Absolute,X
Future Expansion
RTI
EOR-(Indirect,X)
Future Expansion
Future Expansion
Future Expansion
EOR-Zero Page
LSR-Zero Page
Future Expansion
PHA
EOR-Immediate
LSR-Accumulator
Future Expansion
JMP-Absolute
EOR-Absolute
LSR-Absolute
Future Expansion
BvC
EOR-(Indirect),Y
Future Expansion
Future Expansion
Future Expansion
EOR-Zero Page,X
LSR-Zero Page,X
Future Expansion
CLl
EOR-Absolute,Y
Future Expansion
Future Expansion
Future Expansion
EOR-Absolute, X



6502 INSTRUCTION SET - HEX LISTING (CONTINUED)

748E -
95 5F -
7 60 -
g761 -
7 62 -
75 63 -
b4 -
/0/65 -
/7666 -
70967 -
Vi ¢%68 -
s 69 -
R 6A -
/e/6B -
727 6C -
76D -
/ZBE -
s 4 6F -
AT -
e 371 -
s d 72 -
77 ,‘i; 73 -
2:8 T4 -
s RT5 -
o766 -
27977 .-
/o408 -
/‘3/ 79 -
/) <‘7A -
»,2357B -
soL7C -
vo¢ 7D -
soETE -
/27TF -
/2580 -
,2781 -
/5082 -
, /83 -
75284 -

/S8F -
r49490 -
A9 -
/592 -
7793 -
£ 2’94 -

LSR-Absolute, X
Future Expansion
RTS
ADC-(indirect,X)
Future Expansion
Future Expansion
Future Expansion
ADC-Zero Page
ROR-Zero Page
Future Expansion
PLA
ADC-Immediate
ROR-Accumulator
Future Expansion
JMP-Indirect
ADC-Absolute
ROR-Absolute
Future Expansion
BVS
ADC-(Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ADC-Zero Page, X
ROR-Zero Page,X
Future Expansion
SEI
ADC-Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ADC-Absolute, X
ROR-Absolute,X
Future Expansion
Future Expansion
STA-(Indirect,X)
Future Expansion
Future Expansion
STY-Zero Page
STA-Zero Page
STX-Zero Page
Future Expansion
DEY

Future Expansion
TXA '

Future Expansion
STY-Absolute
STA-Absolute
STX-Absolute
Future Expansion
BCC
STA-(Indirect),Y
Future Expansion
Future Expansion
STY-Zero Page,X

144 95
/56 gg
/5797
/5"298
/bﬁjgg
7574 9A
75598
79 59C
14 © 7/‘9D
;<K 9E
76 <AD
/&7 A1
F52A2

76 A3 .

s CA4
4 v AB
4.5 AB
/6 AT

/CEAB

7 A9
77< AA
/7/ AB
¢ 75AC
2 75AD
/ 79AE
/7% AF
279 B@
Z°?7B1
/ 75B2
/7%B3
/£¢B4
/¢/B5
/ 72B6
s ¢3B7

754/ B8

1,8 B9
/76BA
/7 BB
~#7BC
»£7BD
/-7 BE
7/ BF
722CH
/7C1H
/7#C2
- /#5,C3
/9 C4
/77C5
S/ C6
7CT7
27:C8
2/C9
222CA
205CB
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STA-Zero Page,X
STX-Zero Page,Y
Future Expansion
TYA
STA-Absolute,Y
TXS

Future Expansion
Future Expansion
STA-Absolute, X
Future Expansion
Future Expansion
LDY-Immediate
LDA-(Indirect,X)
LDX-Immediate
Future Expansion
LDY-Zero Page
LDA-Zero Page
LDX-Zero Page
Future Expansion
TAY
LDA-Immediate
TAX

Future Expansion
LDY-Absolute
LDA-Absolute
LDX-Absolute
Future Expansion
BCS
LDA-(Indirect),Y
Future Expansion
Future Expansion
LDY-Zero Page, X
LDA-Zero Page,X
LDX-Zero Page,Y
Future Expansion
CLv
LDA-Absolute,Y
TSX

Future Expansion
LDY-Absolute, X
LDA-Absolute, X
LDX-Absolute,Y
Future Expansion
CPY-Immediate

CMP-(indirect,X) -

Future Expansion
Future Expansion
CPY-Zero Page
CMP-Zero Page
DEC-Zero Page
Future Expansion
INY
CMP-Immediate
DEX

Future Expansion




6502 INSTRUCTION SET - HEX LISTING (CONTINUED)

20 CC -
.25 CD
206CE -
29/CF
2909 -
27D1" -
D2
2// D3 -
2/2D4 -
2/3p5 -

274D -

215 D7 -
2/ D8 -

2/7D9 -
2/%DA -
2/2DB -

_2=¢DC -
>2)DD -
>3/DE -
225DF -
o EQ -
>24E1 -
w>GE2 -

2>JE3 -

Z225E4 -

22%2°E5 -

CPY-Absolute
CMP-Absolute
DEC-Absolute
Future Expansion
"BNE -
CMP-(Indirect),Y
Future Expansion
Future Expansion
Future Expansion
CMP-Zero Page,X
DEC-Zero Page,X
Future Expansion
CLD
CMP-Absolute,Y
Future Expansion
Future Expansion
Future Expansion
CMP-Absolute, X
DEC-Absolute, X
Future Expansion
CPX-Immediate
SBC-(Indirect,X)
Future Expansion
Future Expansion
CPX-Zero Page
SBC-Zero Page

220 EB6
23/ E7
2. E8
25 -E9
.-+ EA
> 32 EB
oJGEC
257ED
27,5 EE
239EF
=z v CFQ
2¢/F1
>42F2
;s F3
2 L Fa
-t hF5
2¢ ¢F6
=47F7
>¢ 2 F8
4 7F9
/)UFA
%%9/FB
>50FC
>0
>s4FE
>53FF
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INC-Zero Page
Future Expansion
INX
SBC-Immediate
NOP

Future Expansion
CPX-Absolute
SBC-Absolute
INC-Absolute
Future Expansion
BEQ
SBC-(Indirect),Y
Future Expansion
Future Expansion
Future Expansion
SBC-Zero Page,X
INC-Zero Page,X
Future Expansion
SED
SBC-Absolute,Y

- Future Expansion

Future Expansion
Future Expansion
SBC-Absolute, X
INC-Absolute, X
Future Expansion



APPENDIX E
6502 DISASSEMBLY TABLE

usiq weoyiusis 1o —~dS
usiq weoytudig 1sea1—-as1

X'SAV-ONI | X'sdv-2gs A'sav-Dds[a3as| [ x e8ed*z-ONI| x'93ed'Z-08S A'ANI-OES o3ad| 4
SAV-ONI SaV-DHS SAV-XdD dON WII-D9S | XNI 98ed'Z-ONI| 98e4'Z-09S| 38ed'Z-XdD X'gNI-OES | WIWI-XdD| 3
X'sav-23d | X'SAV-dWND Asgv-dWolatd| [x*e8ed'z-D3a | X 98ed'Z-dWD A'ANI-dWD aNnd| a
sqv-o3a| sdv-diWd SgV-AdD X3d WIWI-dIWD|ANI a3ed*Z-0dA| 98ed'Z-dWD| 933ed'Z-AdD X'ANI-dWD| WIWIFAdD| O
ASAV-XA [ x'sav-val| x'sav-Ad1 XSL| A'sav-vai|a1d] [Ae8ed'Z-Xa1|X'98ed’Z-va1|x'93ed'Z-AA1 A'ANI-VA1 sog| 4
sdv-Xal| sav-vail| sdav-Adl XVL WWI-VAT]AVL %ed'Z-Xd1| 98ed'Z-val| 9¥%ed'z-AQ1| [WWI-XAT| X'aNI-vA1f WAI-FAQT| V
X'Sav-V1S SXL| A'SavV-VIS|VAL| |[A'98ed"Z-XLS| X'98ed'Z-V1S| X 3%ed"Z-ALS A'ANI-V1S 20d| 6
SAV-X1S SAV-V1S SAV-ALS VX1 Ada 93ed'Z-X1S| 98ed'Z-viS| 98ed‘'zZ-ALS X'ANI-V1S 8
X'sav-d0y | X'sgv-dayv Asgv-oav]ias | [x'e8ed’'Z-40d | X 98ed ' Z-0QV A'ANI-DAV sad| L
sgv-yod | sdv-dav aNI-dINF| [ v-d0d WIWI-DAav |V 1d 93ed'Z-40¥ | 98%ed’Z-0AV X dNI-OAV sid| 9
X'Sav-¥S1| X'sav-303 A'SAV-HO3[1TD X 2884 Z-YST| X 98ed'Z-403 A'ANI-Y03 ong| s
SEV-UST SEV-403 SAvV-dINT v-4S1 WWI-403 [VHd a8eq'Z-4ST| 9%ed'Z-yod X'ANI-¥03 | v
X'S4V-104 | X'SAV-ANV A'SEV-ANV|DAS | [X"98ed'Z-104 X 93ed'Z-AONV AANI-AONY wal ¢
Sav-10¥ | SAV-ANV sgv-Lid v-104 WII-ANV |[d1d a8ed'Z-10d]| 98ed'Z-aNv| 3%ed‘z-1Ig X'ANI-ONV usr] T
X'SEV-1ISV | X'SAV-Vi0 A'SEV-VHO [D1D| | X'98ed"Z-1SV | X 98.d'Z-V IO A‘ANI-VI0 149 1
Sav-1Sv SAV-vI0 V-1SV| . WI-VYO|dHd 98ed'Z- 1SV 98ed'Z-ViO X'ANI-VYO Ndd [ B
dsw
E| El a o) v 6 8 9 S 14 £ z I ]
asi

3718v1 30002d0
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APPENDIX F
SPECIAL SYMBOLS

A Accumulator

XY Index Registers

M Memory

P Processor Status Register
S Stack Pointer

v Change

- “No Change

+ Add

A Logic AND

- Subtract

¥ Logic Exclusive Or

I Transfer from Stack

! Transfer to Stack

- Transfer to

— Transfer to

\Y Logical OR

PC Program Counter
PCH Program Counter High
PCL Program Counter Low
OPER OPERAND

# IMMEDIATE ADDRESSING MODE
$ Indicates a Hex Value
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APPENDIX G
COMPLETE INSTRUCTION LIST WITH OPCODES

ADC
ADD MEMORY TO ACCUMULATOR WITH CARRY
Operation: A+ M+ C — A, C N Zz C I D V
v v v - = v
ADDRESSING ASSEMBLY LANGUAGE OP
MODE FORM CODE

Immediate ADC # Oper 69 /08
Zero Page ADC Oper 65 o/
Zero Page, X ADC Oper, X 75 /17
"Absolute ADC Oper . 6D /01
Absolute, X ADC Oper, X _ 7D _/27
Absolute, Y ADC Oper, Y 79 12/
(Indirect, X) ADC (Oper, X) 6177
(Indirect), Y ADC | (Oper), Y 71 /12

AND

“AND” MEMORY WITH ACCUMULATOR
Logical AND to the Accumulator

Operation: AAM— A N Z C I D V
' ' v Y = = = =
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM CODE

Immediate AND - # Oper 29 4/
Zero Page AND Oper 25 37
Zero Page, X AND Oper, X 35 52
Absolute AND Oper D Y5
Absolute, X AND Oper, X 3DE/
Absolute, Y AND Oper, Y 39 57
(Indirect, X) AND (Oper, X) 21 32
(Indirect), Y AND (Oper), Y 3149
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ASL
ASL SHIFT LEFT ONE BIT (MEMORY OR ACCUMULATOR)

Operation: C = [7]6]5]413[2]1]9|—@ N Z C 1 D V
' v v ¥ = = =
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM ‘ CODE
Accumulator ASL A PA /0
Zero Page - ASL Oper g6 6
Zero Page, X ASL Oper, X 16 2=
Absolute ASL Oper pE /%
Absolute, X ASL Oper, X 1E 32
BCC .
BCC BRANCH ON CARRY CLEAR
Operation: Branch on C = ¢ N Z C I D V
ADDRESSING ASSEMBLY LANGUAGE ‘ OP
MODE FORM CODE
Relative BCC Oper 999 /¥
BCS
BCS BRANCH ON CARRY SET
Operation: Branch on C = 1 . N Z C I D V
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM CODE
Relative BCS Oper . By 76
BEQ
v BEQ BRANCH ON RESULT ZERO
Operation: Branchon Z = 1 N Z C I D V
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM CODE

Relative BEQ Oper Fg 246

61



BIT
BIT TEST BITS IN MEMORY WITH ACCUMULATOR
Operation: AAM,M; =N, Mg —V

Bit 6 and 7 are transferred to the status Register. N Z C 1 D V
If the result of A A M is zero then Z = 1, otherwise §. M, v —~— — = M
ADDRESSING ASSEMBLY LANGUAGE oP

MODE FORM CODE
Zero Page BIT Oper 24 36
Absolute BIT Oper 2C 44
BMI
BMI BRANCH ON RESULT MINUS
Operation: Branch on N=1 N Z C 1 D V
ADDRESSING ASSEMBLY LANGUAGE OP
MODE ' FORM | CODE
Relative BMI Oper 39 H¢
BNE
_BNE BRANCH ON RESULT NOT ZERO
Operation: Branchon Z = N Z C I D V
ADDRESSING ASSEMBLY LANGUAGE OP
MODE FORM CODE
Relative BNE Oper Dp 20%
BPL
BPL BRANCH ON RESULT PLUS
Operation: Branch on N = § N Z C I D V
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM CODE
Relative BPL Oper 10 /¢
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BRK

BRK FORCE BREAK

Operation: Forced Interrupt PC + 2 | P | N I D V
— 1 = =
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM CODE
Implied BRK /)
A BRK command cannot be masked by setting I.
BVC
BVC BRANCH ON OVERFLOW CLEAR
Op_eration: Branchon V= 0O N 1 D V
ADDRESSING ASSEMBLY LANGUAGE opP
MODE FORM CODE
Relative BVC Oper 0 KO
BVS
BVS BRANCH ON OVERFLOW SET
Operation: Branch on V = 1 ' N I D V
ADDRESSING ASSEMBLY LANGUAGE OP
MODE FORM CODE
- Relative BVS Oper M /2
CLC
CLC CLEAR CARRY FLAG
Operation: § — C N 1 D V
ADDRESSING ASSEMBLY LANGUAGE OoP
MODE FORM CODE
Implied CLC 18 2¢
CLD
CLD CLEAR DECIMAL MODE
Operation: ® — D N I \%
- - 9 -
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM CODE
Implied CLD ' D8
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Ny

CLI

CLI CLEAR INTERRUPT DISABLE BIT

Operation: § — | N Z D V
- -  J—
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM CODE
Implied CLI 58 €€
\
CLV >
CLV CLEAR OVERFLOW FLAG
Operation: § — V ‘N Z I D V
- - - - ¢
ADDRESSING ASSEMBLY LANGUAGE OP
MODE FORM CODE
Implied CLV B8 /¢Y
CMP . : '
CMP COMPARE MEMORY AND ACCUMULATOR
Operation: A — M ' N Z I D V
v "4 —_ — —_
' ADDRESSING ASSEMBLY LANGUAGE oP -
MODE FORM CODE
Immediate CMP # Oper c9 e/
Zero Page CMP Oper cs 127
Zero Page, X CMP Oper, X .D§s 2/>
Absolute CMP Oper CD 2%
Absolute, X CMP Oper, X DD 2=/ -
Absolute, Y CMP Oper, Y Dy 2/7
(Indirect, X) CMP (Oper, X) c1 /192
(Indirect), Y CMP (Open), Y DI 209
CPX | _
CPX COMPARE MEMORY AND INDEX X
Operation: X — M N Z I D V
vy v - - -
I'd
ADDRESSING ASSEMBLY LANGUAGE oP :
MODE FORM CODE
Immediate CPX # Oper Eg x2¢Y
Zero Page CPX Oper E4 225
Absolute CPX Oper EC 2354
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CPY
. . CPY COMPARE MEMORY AND INDEX Y
Operation: Y — M N Z C I D V

v v v = = =
ADDRESSING ASSEMBLY LANGUAGE , oP
MODE FORM CODE
Immediate CPY ‘# Oper cp 792
Zero Page CPY Oper c4 /76
Absolute - CPY - Oper CC >o4%
DEC
DEC DECREMENT MEMORY BY QNE
Operation: M — 1 —M N Z C I D V
v vy = = = =
ADDRESSING ASSEMBLY LANGUAGE OoP
- MODE FORM CODE
Zero Page DEC Oper . C6 9%
Zero Page, X DEC Oper, X - D6 YA
Absolute DEC Oper CE 206
Absolute, X DEC Oper, X DE 222
DEX
DEX DECREMENT INDEX X BY ONE
Operation: X — 1 — X N Z C I D V
4 v v = = = =
ADDRESSING ’ ASSEMBLY LANGUAGE OP
MODE FORM CODE
Implied DEX CA 20>
DEY |
‘ DEY DECREMENT INDEX Y BY ONE
Operation: Y — 1 — Y N Z C I D V
' Y Y = = = -
ADDRESSING ASSEMBLY LANGUAGE oP
MODE . FORM CODE
Implied DEY : 88 /364
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EOR

EOR “EXCLUSIVE-OR” MEMORY WITH ACCUMULATOR

Operation: A ¥ M — A N Z C I D V.
vV v = = = =
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM CODE
Immediate EOR # Oper 49 7
Zero Page EOR Oper 45 67
Zero Page, X EOR Oper, X 55 g5
Absolute EOR Oper 4D 77
Absolute, X EOR Oper, X sSD 92
Absolute, Y EOR Oper, Y 59 €7
(Indirect, X) EOR (Oper, X) 41 55
(Indirect), Y EOR (Oper), Y 51 &/
INC
} INC INCREMENT MEMORY BY ONE
Operation: M + 1 — M N Z C 1 D V
' v v = = = =
ADDRESSING ASSEMBLY LANGUAGE oP
MODE : FORM CODE
Zero Page INC Oper E6 23<
Zero Page, X INC Oper, X F6 246
Absolute INC Oper EE 23¢%
Absolute, X INC __ Oper, X FE  >54
INX .
INX INCREMENT INDEX X BY ONE
Operation: X + 1 — X N Z C I D V
vV v = = = =
ADDRESSING ASSEMBLY LANGUAGE OP
MODE FORM CODE
Implied INX E§ 232
INY
INY INCREMENT INDEX Y BY ONE
Operation: Y +1—Y N Z C I D V
v v - = = =
ADDRESSING ASSEMBLY LANGUAGE OP
MODE. FORM CODE
Implied INY C8 Dpo
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JMP
JMP JUMP TO NEW LOCATION

Operation: (PC + 1) — PCL N Z ¢ 1 D V
(PC + 2) — PCH - - - - - -
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM ) CODE
Absolute JMP Oper i 76
Indirect JMP (Oper) 6C ro0f
~ JSR
JSR JUMP TO NEW LOCATION SAVING RETURN ADDRESS
Operation: PC+ 2 |, (PC+ 1) PCL N Z C I D V
(PC+2) PCH - - - - - =
ADDRESSING ASSEMBLY LANGUAGE opP
MODE FORM - CODE
Absolute JSR Oper 20 32
LDA
LDA LOAD ACCUMULATOR WITH MEMORY
Operation: M — A N Z C I D V
vy v = = = =
ADDRESSING . ASSEMBLY LANGUAGE OP
MODE FORM CODE
Immediate LDA # Oper AY /89
Zero Page ~ LDA Oper AS /65
Zero Page, X LDA Oper, X BS /5/
Absolute LDA Oper AD /73
Absolute, X LDA Oper, X BD /¢9
Absolute, Y - LDA Oper, Y B9 /¢S
(Indirect, X) LDA (Oper, X) Al /67
(Indirect), Y LDA (Oper), Y Bl /777
LDX
LDX LOAD INDEX X WITH MEMORY
Operation: M— X N Z C 1 D V
v v = = = =
ADDRESSING ASSEMBLY LANGUAGE OP
MODE FORM CODE
Immediate LDX # Oper A2 /62
Zero Page LDX Oper A6 s£6
Zero Page, Y LDX Oper, Y B6 /& <
Absolute LDX Oper AE /7Y
Absolute, Y LDX Oper, Y . BE )90




LDY
. LDY LOAD INDEX Y WITH MEMORY
Operation: M — Y ' N Z C 1 D V

vy v = = = =
ADDRESSING . ASSEMBLY LANGUAGE oP
MODE FORM CODE
Immediate LDY # Oper Ap /€C
Zero Page : LDY Oper A4 s¢4
Zero Page, X LDY Oper, X B4 ,F©
Absolute LDY Oper ACr72
Absolute, X LDY Oper, X BC/ &%
LSR
LSR SHIFT RIGHT ONE BIT (MEMORY OR ACCUMULATOR)
Operation: § — [7[6[5]4]3]2[1]gl — C N Z C¢C 1 D V
0 v v - - -
ADDRESSING ASSEMBLY LANGUAGE OoP
MODE FORM CODE
Accumulator : LSR A 4A 74
Zero Page LSR Oper 46 7 ‘67
. Zero Page, X LSR Oper, X s6 ¢
Absolute LSR Oper 4 78
Absolute, X LSR | Oper, X SE. 74
NOP
NOP NO OPERATION
Operation: No Operation (2 cycles) N Z ¢ 1 D V
ADDRESSING ASSEMBLY LANGUAGE ~ OP
MODE FORM CODE
Implied NOP EA 23%
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ORA
ORA “OR” MEMORY WITH ACCUMULATOR

~ Operation: AVM — A N Z C€C 1 D V
b _ v v - = = =
ADDRESSING ASSEMBLY LANGUAGE OP
MODE FORM CODE
Immediate ORA # Oper p9 2
Zero Page ' ORA Oper ps 5
Zero Page, X ORA Oper, X 15 =2
Absolute ORA Oper oD 3>
Absolute, X ORA Oper, X 1D >4
Absolute, Y ORA Oper, Y 19 25
(Indirect, X) ORA (Oper, X) 01 /
(Indirect), Y ORA (Oper), Y 11 /7
PHA
PHA PUSH _ACCUMULATOR ON STACK
Operation: A | ' N Z ¢ I D V
"~ ADDRESSING : ASSEMBLY LANGUAGE oP
MODE FORM CODE
Implied PHA 48 /D
PHP
PHP PUSH PROCESSOR STATUS ON STACK
Operation: P | N Z C I D V
ADDRESSING ASSEMBLY LANGUAGE OP
MODE FORM ‘CODE
Implied ' PHP g8 5
PLA
PLA PULL ACCUMULATOR FROM STACK
Operation: Al N Zz C I D V
vV v - = = =
ADDRESSING ASSEMBLY LANGUAGE opP
MODE . FORM CODE
Implied PLA 68 /0%
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PLP
PLP PULL PROCESSOR STATUS FROM STACK

Operation: P | ‘ : N zZ C¢C I D V
From Stack
ADDRESSING - ASSEMBLY LANGUAGE OP
MODE . FORM . . _  CODE
Implied . PLP . 28 Ye
ROL

ROL ROTATE ONE BIT LEFT (MEMORY OR ACCUMULATOR)

Operation: mmm N zZ C I D V

v v v —_ _ —_
ADDRESSING ' ASSEMBLY LANGUAGE OP
-MODE FORM CODE
Accumulator  ° - ROL A A 42
Zero Page ROL Oper 26 3£
Zero Page, X ROL Oper, X 36 5-4
Absolute ROL Oper JE Y€
Absolute, X ROL Oper, X 3E 62
ROR . _ v,
ROR ROTATE ONE BIT RIGHT (MEMORY OR ACCUMULATOR)
Operation: L{C—[6BABRIM N Zz Cc I D V
' ' v Y Y = = =
ADDRESSING ASSEMBLY LANGUAGE OoP
MODE FORM CODE
Accumulator : ROR A 6A 706 .
Zero Page ROR Oper 66 722
- Zero Page, X ROR Oper, X 6 /1/%
Absolute . ROR _ Oper 6 //<
Absolute, X ROR Oper, X 1E /26
RTI
RTI RETURN FROM INTERRUPT
Operation; P! PC1 N Z C I D V
From Stack
ADDRESSING ASSEMBLY LANGUAGE OP
MODE FORM CODE
Implied RTI - 49 &Y
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RTS

RTS RETURN FROM SUBROUTINE

Operation: PC1 ,PC+ 1 —PC N D V
ADDRESSING ASSEMBLY LANGUAGE orP
MODE FORM CODE
Implied RTS 60 94
SBC
SBC SUBTRACT MEMORY FROM ACCUMULATOR WITH BORROW
Operation: A — M—C — A N Z C I D V
v - = v
Note: C = Borrow
ADDRESSING ASSEMBLY LANGUAGE opP
MODE FORM CODE
Immediate SBC # Oper ‘B9 233
Zero Page SBC Oper’ ES 227
Zero Page, X SBC Oper, X F5 245
Absolute SBC Oper ED 237
Absolute, X SBC Oper, X FD %3
Absolute, Y SBC Oper, Y F9 =249
(Indirect, X) SBC (Oper, X) E1 22
~ (Indirect), Y SBC (Oper), Y F1 24/
SEC
SEC SET CARRY FLAG
Operation: 1 — C N I D V
ADDRESSING ASSEMBLY LANGUAGE OoP
MODE FORM CODE
Implied SEC 38 56
SED
SED SET DECIMAL MODE
Operation: 1 — D N I D V
- - 1 -
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM CODE
Implied SED F§ Yy
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SEI

SEI SET INTERRUPT DISABLE STATUS

Operation: 1 — 1 N Z C I D V
. -
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM CODE
Implied SEI 78 /20
STA
STA STORE ACCUMULATOR IN MEMORY
Operation: A — M N Z C I D V
ADDRESSING ASSEMBLY LANGUAGE - OP
MODE FORM CODE
Zero Page ‘STA Oper g5 />2
Zero Page, X STA Oper, X 95 /<7
Absolute STA Oper 8D / 4/
Absolute, X STA Oper, X 9p /57
Absolute, Y STA Oper, Y 99 /53
(Indirect, X) STA (Oper, X) 81 /27
“(Indirect), Y STA (Oper), Y 91 /45
STX
STX STORE INDEX X IN MEMORY
Operation: X — M N Z C I D V
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM CODE
Zero Page STX Oper 86 />4
Zero Page, Y STX Oper, Y 96 /50
Absolute STX Oper 8E /42
STY
STY STORE INDEX Y IN MEMORY
Operation: Y — M N Z C I D V
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM CODE
Zero Page STY Oper 84 /32
Zero Page, X STY Oper, X 94 /%Y
Absolute STY Oper
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TAX
TAX TRANSFER ACCUMULATOR TO INDEX X

Operation: A — X : N Z C I D V
_ vV Y = = = =
ADDRESSING . ASSEMBLY LANGUAGE OoP
MODE FORM CODE
Implied TAX AA /20
TAY
TAY TRANSFER ACCUMULATOR TO INDEX Y
Operation: A — Y N Z C | D V
vV /= = = =
ADDRESSING - ASSEMBLY LANGUAGE oP
MODE FORM CODE
Implied TAY A8 /6%
TYA
_ TYA TRANSFER INDEX Y TO ACCUMULATOR
Operation: Y — A \\ N z Cc 1 DV
Y v v = = = -
. /
ADDRESSING | ASSEMBLY LANGUAGE oP
MODE FORM- CODE
Implied \ TYA 98 /52
TSX |
TSX TRANSFER STACK POINTER TO INDEX X
Operation: S — X N Z C I D V
N
ADDRESSING ASSEMBLY LANGUAGE oP
MODE FORM CODE
Implied TSX BA /£6
TXA
TXA TRANSFER INDEX X TO ACCUMULATOR
Operation: X — A N Z C I D V
v Y = = = =
ADDRESSING ASSEMBLY LANGUAGE OP
MODE FORM CODE
Implied TXA 8A /3¢
73
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TXS
TSX TRANSFER INDEX X TO STACK POINTER

Operation: X — S , N Z C I D V
ADDRESSING ASSEMBLY LANGUAGE OP
MODE FORM CODE
Implied TXS 9A /54
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ASSEM

10 0000
20 0000
30 0000
40 0000
50 0000
60 0000
70 0000
80 FEQQ
90 FEQQ
100 FE@2
110 FE@3
120 FEQ4
130 FEQ7
140 FEQ9
150 FE@C
160 FEQE
170 FE10
180 FE12
1990 FE14
200 FE16
210 FE18
220 FE19
230 FE1B
249 FE1D
250 FE1E
260 FE20
279 FE22
280 FE24
290 FE26
300 FE28
310 FE2A
320 FE2A
330 FE2D
340 FE2F
350 FE31
360 FE33
370 FE35
380 FE37
390 FE39
409 FE3C
410 FE3E
420 FE40
430 FE43
440 FEA45
450 FEA47
460 FE4A

APPENDIX H
0S| 65V MONITOR MOD 2 LISTING

; O8I 65U PROM MONITOR MOD 2

FLAG=$FB

DAT=$FC

PNTL=$FE

PNTH=$FF

‘ *=$FEQQ

A228 VM LDX *$28 INITIALIZATION
9A TXS ‘
D8 CLD
ADQ6FB LDA  $FB@6
ASFF LDA  #S$FF
8DP5FB STA $FBP5
A2D8 LDX #$D8
A9DQ LDA  #3$DOQ
85FF STA PNTH
A90Q LDA  #0
85FE STA PNTL
85FB STA FLAG
A8 TAY
A920 LDA  #
91FE VM1 STA (PNTL),Y
cs INY
DOFB BNE VM1
E6FF INC PNTH
E4FF CPX ~ PNTH
DOF5 BNE VM1
84FF . STY PNTH
FP19 BEQ IN
2PESFE ADDR JSR INPUT ADDRESS MODE
C92F CMP  #'/
FO1E BEQ DATA
C947 CMP  #'G
FO17 BEQ GO
co4C CMP  #'L
F@43 : BEQ LOAD
2093FE JSR LEGAL
30EC BMI ADDR
A20p2 LDX #2
20DAFE . JSR ROLL
B1FE IN LDA (PNTL),Y
85FC STA DAT
2QACFE JSR OUTPUT
D@DE BNE  ADDR
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ASSEM

470 FE4C
489 FE4C
490 FE4F
500 FE47
510 FE52
520 FE54
530 FE56
549 FES8
550 FE5A
560 FESC
570 FESE
58p FE6Q
590 FE62
600 FE64
610 FE66
620 FE69
639 FE6C

649 FEGE

650 FE70
660 FE73
670 FE75
680 FE77
690 FE7A
700 FE7C
71@ FE7C
720 FET7E
730 FE80
740 FE8Q
750 FES83
760 FE84
770 FE86
780 FE89
790 FE8C
800 FESE
810 FE8F
820 FE8F
820 FE9Q
820 FE91
820 FE92
830 FE93
840 FE93
850 FE95
860 FE97
870 FES9
880 FEOB
899 FE9OD
90@ FEOF
910 FEA1
920 FEA3
930 FEA4
940 FEAG
950 FEAS8
960 FEAS
970 FEAB
980 FEAC

6CFEQ®

20ESFE
C92E
F@D4
CogD
DOOF
E6FE
Do@2
E6FF
AD0Q
B1FE
85FC
4C77FE
2P93FE
30E1
A200
20DAFE
ASFC
91FE
20ACFE
D@D3

85FB
FOCF

ADQOFC
4A
90FA
AD@1FC
EAEAEA
297F
60

GO

bATA

DAT3

DAT4

INNER

LOAD

OTHER

LEGAL

OK

FAIL

JMP
JSR
CMP

BEQ

CMP
BNE
INC
BNE
INC
LDY
LDA
STA
JMP
JSR
BMI
LDX
JSR
LDA
STA
JSR
BNE

STA
BEQ
LDA
LSR
BCC
LDA
NOP

AND
RTS

.BYTE

CMP
BMI
CMP
BMI
CMP
BMI
CMP
BPL

" SEC

SBC
AND
RTS
LDA
RTS

(PNTL)

INPUT
#'.
ADDR
#8$D
DAT4
PNTL
DAT3
PNTH
#0
(PNTL),Y
DAT
INNER
LEGAL
DATA
#0
ROLL
DAT
(PNTL),Y
OUTPUT
DATA

FLAG
DATA

$FCOQ
A
OTHER
$FCO1
NOP
#$7F

0,000

#'0
FAIL
#'
OK
#'A
FAIL
#G
FAIL

#7
#SF

#$80
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KICK INPUT DEVICE FLAG

SERIAL INPUT SUB.
(FOR AUDIO CASSETTE)

NOP

EXCESS ROOM

IGNORE NON HEX CHAR.




ASSEM

999 FEAC
1000 FEAE
1010 FEBQ
1020 FEB2
1030 FEB3
1040 FEB4
1050 FEBS
1060 FEB6
1070 FEBO
1080 FEBB
1090 FEBE
1100 FEBF
1119 FECH
1120 FEC3
113p FEC6
1140 FEC9
1150 FECA
1169 FECA
1179 FECC
1180 FECE
1190 FED®
1200 FED2
1210 FED3
1220 FEDS
1230 FED8
1249 FED9
1250 FEDA
1269 FEDA
1279 FEDC
1289 FEDD
1299 FEDE
130@ FEDF
1310 FEEQ
1320 FEE1
1330 FEE3
1349 FEES
1350 FEE6
1360 FEES
1370 FEE9Q
1380 FEEB
1390 FEED
1400 FEFQ
1410 FEF2
1420 FEF5
1430 FEF8
1440 FEF9
1450 FEFA
1460 FEFC
1470 FEFE
1489 FFQQ

A203
AQOQ
BSFC
4A

4A

4A

4A
2QCAFE
B5FC
20CAFE
CA
10EF
A920
8DCADQ
8DCBD®
60

290F
9930
C93A
3003
18
6907
99CeDY
cs -
60

2A
36FC
36FD
88
DoF8
60
A5FB
Do
4CQOFD
ASFF
8DP@DF
ADQ@DF
60

EA
3001
OOFE
Con1

OUTPUT

oul

DIGIT

HA1

ROLL

R@1

KBTEST

LDX
LDY
LDA
LSR
LSR
LSR
LSR
JSR
LDA
JSR
DEX
BPL
LDA
STA
STA
RTS

AND
ORA
CMP
BMI
CLC
ADC
STA
INY
RTS

LDY
ASL
ASL
ASL
ASL
ROL
ROL
ROL
DEY
BNE
RTS
LDA
BNE
JMP
LDA
STA
LDA

" RTS

NOP
WORD
.WORD
WORD
.END

DIGIT
DAT.X
DIGIT

Ooul
#

$D@CA
$DOCB

#$F
#$30
#$3A
HA1

#7
$D@Ce,Y

>2>> P> %

DAT.X
DAT+1.X

R@1

FLAG
$FE7E
$SFDOQ
#$FF
$DFOQ
$DFQQ

$130
$FEQQ
$1CQ
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OUTPUT LLLL DD
ONTO SCREEN

OUTPUT 1 DIGIT TO SCREEN

MOVE LSD INAC TO -
LSD IN 2 BYTE NUM.

CASSETTE IN?
YES-GO DO ACIA INPUT
NO-GO POLL KB

KB TEST SUBR.

NMI VECTOR
RESET VECTOR
IRQ VECTOR
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APPENDIX J
65V MONITOR COMMAND SUMMARY

The OS-65V Monitor responds to the followiné key: :
0-9,A-F Hex digits .
. Change to Address Mode |
/  Change to Data Mode
G Go to address shown on screen and execute code there

RETURN Increment address (only in Data Mode)

L Transfer control to audio cassette. This command enters the Data Mode, ignores the
keyboard and listens only to the cassette port (if present). To transfer control back to
the keyboard, press reset or load $@@FD with a $00 via tape.

80




APPENDIX K

TWO-WAY ARITHMETIC LISTINGS

The following listings show one possible way to implement the Decimal-Hex and Hex-Decimal Converter pro-
grams from page 47. The four relocatable subroutines are included. The initial address of $4@0@ was arbitrarily
chosen as a convenient location for disk systems (cassette systems would typically use $1099).

4000
4001

4003
4005
4007
400A
400C
400D
AQQF
4911

4013
4015
4018
4018
401C
4p1F
4021

4022
4024
4925
4927
4928
4p2A
492C
402D
4p2F
4031

4033
4036
4937
4039
403A
403C
4¢3D
4P3E
4Q3F
4949
4041

4p42
4043
444
4047
4048
4048
4p4C

DECIMAL-HEX CONVERTER

D8
A920
AQQQ
A207
9DC6eDY
94EQ
CA
10F8
A2EQ
AQ40
A9(8
200041
2QEDFE
48
2P93FE
1003
68
5¢DD
48
A207
EA
B5EQ
95E8
CA
10F9
AQQ9
A207
200042
88
DQF8
68
A207
EA

EA

EA

EA

EA

EA

EA

EA
200043
68
200044
EA
4CQF40
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CLD
LDA
LDY
LDX
STA
STY
DEX
BPL
LDX
LDY
LDA
JSR
JSR
PHA
JSR
BPL
PLA
BVC
PHA
LDX
NOP
LDA
STA
DEX
BPL
LDY
LDX
JSR
DEY
BNE
PLA
LDX
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
JSR
PLA
JSR
NOP
JMP

#$20
#$00
#$07
$0PCE,X
$EQ,X

$4007
#$EQ
#$40
#9308
$4100
$FEED

$FEO3
$4024

$4001
#$07

$EQ.X
$E8 X

$4028
#$09
#307

$4200
$4031

#$07

$4300
$4400
$400F




The Decimal-Hex Converter program uses four subroutines: HEXTV, ADDN, ADD1 and SCROLL. The listings é
of these that follow are located to coincide with the calling routines on the previous page. "

4100
4192
4104
4105
4106
4107
4108
410B
410D
4119
4111

4112
4114
4116

4200
4201
4203
4205
4207
4208
420A

4300
4301
4303
4305
4306
4308
430A

4490
4492
4493
4404
44p6
4497
4499
440A
449C
440E
440F
4411

EXTV
85FF H

B50@
4A

4A

4A

4A
2QCAFE
B50@
20CAFE
EA

E8
C6FF
DOEC
60

18
B5SEQ
75E8
95EQ
CA
10F7
60

18
75E0Q
95E0Q
CA
A9pQ
BOF7
60

AQQQ
48
Cc8
B1F8
88
91F8
C8
C4FA
DOF5
68
91F8
60

ADDN

ADD1

SCROLL

STA
LDA
LSR
LSR
LSR
LSR
JSR

LDA
JSR
NOP
INX

DEC
BNE
RTS

CLC
LDA
ADC
STA
DEX
BPL
RTS

CLC
ADC
STA
DEX
LDA
BCS
RTS

LDY
PHA
INY

LDA
DEY
STA
INY

CPY
BNE
PLA
STA
RTS

$FF
$00.X

$EQ,X
$E8,X
$EQ.X

$420)1

$E®,X
$EQ,X

#$00
$4301

#$00

($F8)Y
($F8)Y )

$FA
$4403

($F8)Y

Make these changes to the Decimal-Hex Converter code on page 81 to complete the transition into Hex-Decimal
Converter. The subroutines will remain unchanged.

4p27
4p2F
4¢3C
403D
403F
4041
4043
4p4B

F8
AQOF
D8
CopA
2002
6905
F8
D8

SED
LDY
CLD
CMP
BCC
ADC
SED
CLD

# SOF

# S0A
$4043
#$05




" INDEX

A
Absolute Addressing Mode ................. 17, 18
Absolute, Indexed X (Abolsute, X).......... 17, 18
Accumulator. . ........ i 13
ADC. .. 37, 43, 60
Addition. ........ R N 37
Address ...... POt 3
Addressing Mode ......................... ‘.4, 13
Algorithm ........ ... ... o i 2
AND. ... e 41, 44, 60
Arithmetic Shift............. ... ... i 40
ASCIICode ... e 7, 51
ASL ..o e 40, 61
Assembler. ... e 14
Assembly. ... ... 14
B .
BCC . . o e 21, 61
BCD. . 8, 47
BCS . 21, 61
BEQ. ... 21, 61
BinaryCode ..............co i, 7,8
Bit.................. e 7
BIT . .t e 44, 61
BMI . .o e 21, 61
BNE. . 21, 62
BPL ..o e 21, 62
Branch......... ..o, 6, 18, 21, 22
BVC . e 63
BV S, 63
Byte .. 3,7
C
Clag) . ... e 21, 37
Carty Bit. . ... 18, 21
CLC . . 37, 63
CLD .. 47, 63
CLL. . e 64
CLV o e 64
CMP .. e 21, 64
Coding. .. ovi i e e 5, 12
Compare Instructions . ......................... 22
Compiler ...t i s 13
Conditional Branch ......................... ... 22
CPX . e 21, 64
CPY . 21, 65
D
Dlag) ... e L. 47
DataMode ....................... e 4

Debugging .............. .o, 14, 27

DEC ... 28, 65

Decimal Mode ................................ 47
DEX .. 28, 65
DEY ... 28, 65
Disassembly Table.................. e 34
Displacement Byte............................. 22
E
Effective Address .......................... 13, 17
EOR ... 43, 44, 66
“Executive-in-a box™.................... . 19
F
Flag ... 17, 21
Flag (clear) ........... .. oot 21
Flag (set). ... i, 21
Flowchart........... P 6
G
“Good Listener” ....... e 12, 14
H
Hardware ............... e 3
Hexadecimal (hex)........ [ 4.9
High Byte .......... P D 17
I .o
" Immediate Addressing Mode ................... 17
Immediate Operand ............. e 17, 18
INC................... e 28, 66
Indexed Indirect Address Mode (IND,X) ........ 50
Indexing Registers........ P 13
Indirect Addressing...... P S 22
Indirect Indexed Mode (IND),Y ................ 45
Input Data............... P 2
Instruction................. e L3
Instruction Register............................ 18
Instruction Set .................. ... .. ........ 12
Interpreter.......... ... .. ...l 13
INX o e 28, 66
INY o 28, 66
IMP .. . 17, 21, 22, 67
JOR . 67
L
Label ... 17
LDA .. e 16, 67
LDX .. 16, 67



LIFO. ... ..o e 31
Linking ......... e e e 49
Loader .............. e e 49
Logical Shift . .........coouiiiniin .. 41
Loop ........... T .6,27
LowByte.........co i 17
LSR .. i . 40, 68
M
Machine Language.................cooiiinnn.. 2
Mash. ...... ... 43
MEmMOTY . . ittt e 3
Mnemonic...........ooiiiiiiniiiinn.. 14,716, 53
Monitor ................ e 2
N
N(flag)....cccooe i 21, 28
NOP. ... 18, 68
0o
Object Code ... 2
Object . Language. e 2
Octal............ [ A 9
Opcode .......... i 13, 16
Operand. ...ttt 13
OR .. e 4,43
ORA ... 44, 69
P
P (flag)........ e ... 3,32, 47
Page (of memory) ...........cciiineiiiinn.ns 19
PHA ......................... e 32,69
PHL.............. P, e e 32, 69
PLA . ... . 32, 69
PLP . 32,70
Port. .. 33
Program.............c.ciiiiiiiii i .2
Program Counter (PC) ............... ...3,17,18
Pull........oo i e 31
Push...............oevvnnnnn. e 31
R
RadixX ... 10
RAM .. e 3
Registers. ...........ooooiiiiini o 3,13
Relative Addressing Mode...................... 22
Relocatable................. e 40, 49
Return Address .........ccovvviiineinnnnnn... L.33
ROL.....o it 40, 70
ROM. ... 3

ROR......o 40
RTL. ... 70
RS 71
S
S (stack Pointer) ...................c i, 31
SBC. . 37
SEC. ... 71
SED. ... 47, 711
SEL. ... .., 32, 72
Shift ... 40
Software. .......... ... ... . e 3
SourceCode ........... . ... 2
Source Language ...................c.oiiiinn... 2
STA .. 16, 17 73 -
Stack.............. F 31
Stack Pointer............. ... .. i i 31
ST X i6, 72
STY oo 16, 72
Subroutine ............... ... . 33,45
Subtraction .......... .. ... ... 37
T
TAX 73
TAY . 73
TimeDelay................. ... 45
“Total Mystery” ...............0......coa. 36
TSX . [P 32,75
Two’s Complement ............... .. 24 26, 40, 47
TXA 73
TXS............0 .. P 32,74
TYA . .73
U
Unconditional Branch.......................... 22
\%

Vlag) ..o 21
X
X-Register.........o.oiiiiii i 13
Y
Y-Register. ... c...13
Z
Z(Mlag)....................... ... e 21 28, 43
ZeroPage ........ ... . e 20
Zero Page Addressing Mode (Z, page) ........... 19
Zero Page Indexed (ZPAGE,X and ZPAGE Y) ... 19




