
c
I
OM

ALL ABOUT

OSI

BASIC IN ROM

SECOND EDITION

Second Printing

Copyright 1981

Edward H. Carlson
Okemos Michigan

Printed in the USA

OSI 6502 8K BASIC is copyrighted by Microsoft . The MONITOR and

the 8K BASIC ' s handlers are copyrighted by Ohio Scient i fic Inc .

CONTENTS

Basic BASIC

Introduction and Overview 1
Some Definitions 2
String and Numerical Constants 2
Variable Names J
Commands and Edit or Commands 4
Immediate Mode Commands 5

Used in RUN Mod e 7
RUN Mode Commands 8
String Operator 16
Numerical Operator s 16
Boolean Operators 16
Bit Manipulation Operators 17
User Defined Functi ons 18
String Functions 18
Numerical Functions 20
USR(X) Function 22
Arrays 24
Bugs and Fixes 25

Garbage Collector 26

Elegant and Exotic BAS I C

Speed, Space, and Clarity 27
Debugg ing a nd Utilities 28
Pr ogr am Format 29
Ut ili t y Pr ograms 29

Prin t At JO
Er ror Me ssage Fix JO
Line Renumberer 31
Branch Locator 35
Program Compactor 36
Good Ra nd om Number Ge n. 50
and o thers

Tapes : BAS IC and Homemade 31
Autoload Tape JJ

Tapewriter Program J4
Hooks Int o BASIC 37
BASIC Trace 37
Keyboa rd and Screen Tricks J8
Two ' s Compl ement Numbers 41
Floating Poi n t Numbers 41
Tokens 43
Sourc e Code and Variables 44
Array Storage 46
The Stack 47
OSI Newsletters 50
6502 Publications 50
OSI Sof·tware Houses 51
Memory Map, Pages $00,01,02 53
BAS IC ROM Addresses 57
MON ITOR Disassembly 62
Support ROM Disassembly 65
Error Codes 68

1

INTRODUCTION

This book is intended for users of OSI Microsoft BASIC-IN-ROM ,

ersion 1. 0, Rev. J. 2, -wh ich is u:::ed on all OSI BASIC - IN--ROM machines.

The material lS presented on 2 levels. The first is pure BASIC. The

complete set of commands, statements, functions and operators is listed,

together with detailed explanations of their applicability and functioning .

Many examples are given of their use to accomplish various results, and

of pitfalls to be avoided.

The second level takes a systems viewpoint. It examines the

functional parts of the BASIC system, including many details of the

machine language implementation of BAS IC, which allow exotic programs to

be written. Using it, your programming will improve in speed, clarity,

economy of storage and ease of human interface to screen, keyboard and

mass storage. Sample utilities are included, such as line renumber .

0 \f:;_;:R\IEW

BAS IC runs in t wo modes, the immediate mode and the run mode.

_Following a cold start or a warm start, the prompter OK appears on

the screen to indicate that the machine is in the immediate mode and

ready to accept keyboard input. To understand BASIC, we need to

keep in mind 5 areas of memory containing code . They are the BASIC

interpreter stored in ROM from $AOOO to BFFF, the line buffer stored

in zero page fr>Om $13 to $59. the source program you write, stored

from $OJOO up, the variable tables stored immediately after the

source code, and the str ing storage at the end of RAM memory.

With the machine in the immediate mode , we enter a line of

material from the keyboard. The entered material appears on the screen

and in the line buffer. When we hit the (RETURN) key , one of two things

will happen . If the line started with a line number, the line is

stored in the proper spot in the source program and we continue in

the immediate mode. If the line did not start with a line number,

the interpreter executes it from the line buffer exactly as if it

were a one line program. This one line program may consist of several

statements separated by colons, and may create, refer to , or alter the

variable tables.

2

SOME DEFINITIONS

Constant Constants.are of two types, numerical and string.

Variable

Examples: numerical string

are
end

J. 62 "Computer"

Yariables are of two types, numeric a l and
distinguished from each other by appending
of string name s. Examples: numerical

AY

string.
a $ sign

string
AY$

They
on the

Command A command causes the computer to execute some definite
procedure. Examples: PRINT, LIST, RUN, X=6. Some commands
need expressions to be complete. Example: ON ... GOTO ...
as used in: ON J*(J+1) GOTO JO, 40, 50

Operator The usual algebraic operators + - * / plus sorre others
such as < ,) ,):: , <. > .

Function A function has arguments (numerical or string) and
returns one value (numerical or string). Examples:
SIN(X), LEFT$(A$,2)

Expression An expression is a set of constants, variables, operators
and functions (which themselves may have expressions as
arguments) which ha s a definite numerical or string value.
Examples: A, J.J, 2-r.·X+Y, J.l+A-)}SIN(PI/2), "AT THE END",
A$, N$+CHR$(I+J)+"HELP" .

S tatement Each statement consists of a single commc.nd. Example:
CLEAR . The command may require constants and/or operators .
Example : PRINT A(X, 2)

Line A line consists of one or more statements s eparated by a
colon":" and possibly starting with a line number i n the
range 0 to 63999. Examples :

22 PRINT
50 A= J: GOTO 71
LIST

STRING CONSTANTS

The most common form for a str ing cons tant is a set of ASCII
characters set between quotes. Example: "YOUR TURN" But other
(non-printing) ASCII ~haracters, or indeed, any hex number can be
included in a string. Examples:

100 A$="YOUR TURN"+CHR$(1J) :REM 1J is the CR code
200 HO$=CHR$(14):REM 14 is the graphics character of a house
JOO PRINT "THIS IS A HOUSE"+HO$

NUMERICAL CONSTANTS

Numbers ar e represented in source c od e as integers, d ecimals,
fractions or in s cientific notation. Exa mples: 7, O. OJ, -2 . E-5, J/4

Numbers cannot, unfortunately, be represented in source code in

~inary or hexadecimal form. When numbers are read from source code

for use, they are converted into a floating point binary number with a

one byte exponent and a 3 byte mant issa. The magnitude of the floating

point number varies from about 10-38 to 10+38 . The largest integer

that can be stored without round off error is 256+3 - 1 = 16 , 772 ,215.

When large or smal l numbers are displayed on the screen , scientific

notation is used and the display shows considerably less accuracy than

what is in memory. Example: a one line program

1 PRINT 16772215
RUN

1.6772E%7

VA RIABLE NAMES

There are two representations of each variable name that we will
consider, the name you give it in the source program and the repre

sentation of that name in the variable table. They may not be the same.

In the source program, names must start with a letter and may contain

any number of letters , numbers and spaces. A name ending with the symbol

_$is a string variable . Names must not contain ~ASIC reserved words

such as SIN, FOR or TO . BASIC ignores all spaces in a line of program.

In the variable table, the name is stored as 2 bytes of ASCII repre

senting the first two characters of its name in the source program.

If the variable in the source program is a single letter , then in the

table the second byte of the name is $00 . If the variable is a

string, then $80 is added to the second byte of the name in the table.

I n the se examples, remember that the ASC II code for A is $41 and for 1

is $31 .
source name in the table table name

A $~ 00 A

A$ 41 80 A$

A1 41 31 A1

AA 41 41 AA

A1$ 41 B1 A1$

A11$ 41 B1 A1$

AGOTOB (illegal)

A 1 TIME 41 31 A1

3

4

Notice that no record in the table tells how long the name was

in the source. All characters past the first 2 are ignored (except

the$ for a string). The effec t of truncation of the source name
is demonstrated in this program:

1 A 1 TIIVIE$= "WHO"
2 PRINT A1$
RUN
WHO

COMMANDS

We will divide commands into 3 groups. Editor commands are used

only in the immediate mode. Immediate mode commands can also be

used in the run mode, but may perform in a defective manner there.

The largest group comprises the run mode commands and all these also

work satisfactorily in the immediate mode.

We depart from the usual nomenclature because it is arbitrary and

confusing. For example, NEW is often called a "command" (it erases

the source program) while CLEAR is called a "statement" (it erases the

variable table). Similarly, the two simultaneous keystrokes (C TRL/C)

are called a " special character" (it causes a break in running) while

STOP is called a statement" (it causes a break in running too). My

nomenclature follows the rules set up in the section "S OME DEFINITIONS".

ED ITOR COMMANDS

While in the immediate mode, a very simple capability is present

for editing the lines of text . We will show key strokes in parentheses,

e . g . (BREAK). Multiple , simultaneous key strokes will be separated

with a/.

(SHIFT/0)

(SHIFT/F)

(RETURN)

Types a _ and erases the last character typed from
the line buffer. It doesn ' t erase it from the screen.
This method of "erasing" is left over from the teletype
days. Several software houses have "line editor" programs
that give true backspace erasing as well as other editor
functions .

Types an @ and erases the line from the line buffer.
You still see the line on the screen .

Terminates the line. If the line did not star t with a
number, the line is interpreted in the immediate mode.
If the line started with a number, the line is stored as
source code, and the machine returns to the immediate mode,
ready for more text input.

(CTRL/0) Suppresses writing to the screen until another (CTRL/0)
is typed.

123 (RETURN) A line number without a statement following it will
erase the corresponding line in the source program .

RUN

RUN 31

GOTO 31

IMMEDIATE MODE COMMANDS

Enters run mode. Starts interpretation and execution
of the source code beginning at the first line (stored at
$0301). Discards the old variable table and constructs a
new one as it interprets .

Starts at line 31 of the source code. Gives US ERROR
if there is no line 31. Otherwise runs and discards the
old variable table and makes a new one.

Starts running at line 31. Keeps the old variable
table .

GOSUB 31 Jumps to line 31 and runs. Keeps old variable table.

LIST

LIST 31

LIST 31-45

LIST 31-

LI ST -31

(C TRL/C)

co_ T

LOAJ

Expects to find a RETURN statement .

Lists the source program. May be stopped with (CTRL/C).

Lists line 31 only .

List s lines 31 through 45 .

Lists line s 31 to the end .

Lists from s t art of program through line 31.

Interrupts execution of the source program or LISTing
and returns to the immediat e mode. (CTRL/C) may be disabled
by POKE 530,1 and enabl ed by POKE 530 , 0.

Continues any procedure (except LIST) that has been
interrupted by a (CTRL/C) or a STOP .

Sets the LOAD flag . This enables the tape port and
disables the keyboard (except the (SPACE BAR) key is
poll ed). Then any input from tape is put into the line
buffer and treated as usual , depending on whether it
s tarts with a number or not . To exit from LOAD , hit
the (SPACE BAR) . To further understand LOAD , look at the
code i n the support ROM at $FF89 and FFB8 .

Deletes the present program . It does not erase it
fro m memory however. One thing it does is to load $00
into addresses $0301 and 0302. This makes a termination
signal for the program at a point where there are zero
line s in the program . I f you wi s h to recover the program ,
use t he MONITOR, and starting at $0300, step along, looking
for the address of the second line of the program. Put
the address back into $0301 and 0302 in the format described
under the heading SOURCE CODE AND VAR . TABLES. This is

5

6

SAVE

NULL

RUN 31

LIST

CONT

LOAD

NEW

SAVE

NULL

not enough of a fix to be able to RUN the program, but you
will be able to SAvn, LIST it to tape, then restart the
machine and read the tape back in.

Used to write to tape . The procedure for saving BASIC
programs is SAVE, (RETURN), LIST, (but don't typ e (RETURN)
yet), start tape and wait a few seconds to give a leader,
then hit the (RETURN) key. To save part of a program,
use the appropriate LIST, eg. LIST 100-300. Exit from the
.SAVE mode by doing LOAD, (RETURN) , (SPACE RI\R) .

It works like this. SAVE calls the short routine at
$FF94 to set a flag in $0205. Then whenever BASIC calls
OUTPUT (at $FF67) to write to the TV screen, (using the
routine at $BF2D), it also transmits each character to the
tape port. The time required for transmission by the 6850
ACIA slows down the whole cycle, which is why you see
the rate of writing to the screen slowed down.

Used to insert nulls at the start of lines of output
to tape. Example: NULL 5. The number of nulls inserted
can vary from 0 to 8. However, the number of nulls
requested is poked into $OD , so you can request up to
255 nulls by POKEing into address 13.

IMM~DIATE MODE COMMANDS
USED IN RUN MODE

Same as "CLEAR:GOTO 31".

Or LIST 31, etc. Does the indicated LISTing, then goes to
immediate mode. A very unhandy characteristic!

Program hangs until you enter (CTRL/C) from the
keyboard .

Sets LOAD flag, with usual results . To get back to
normal , next statement should read INPUT A$, and then
hit (SPACE BAR) .

Poison! If NEW is encountered in your program, it
"erases" your program and goes to immediate mode!

Works normally. Sets the flag in $0205.

Works normally.

PEM . ..

RUN MODE COMMANDS

- The replacement command. LET is optional, and in fact
is not often used. Examples:

5 LET A = 2
7 P1B$ ="COAL "

Remark. Thi s statement allows comments to be included
in t h e source program. These statements are ignored during
r unn i ng . Examples :

10 R~~ *** PROGRAM ITCH ***
20 REM
30 A=2:REM A IS THE NUMBER OF BITES

Statements after ~ REM cannot be reached by the interpreter .

30 A=2:REM CASE TWO:B=4

The statement " B=4 " cannot be reached. If the Ri':Mark
follows a GOTO . . . , the word REM can be omit t ed because
the interpreter will never reach far enough into the line
to detect t he syntax error. Example:

10 GOTO 33: GO MO-,rE PIECE is as good as
10 GOTO 33:REM GO MO -,E PIECE

Unlike some compilers, BASIC doesn't pack repeated characters
into compact form. Every character takes one byte in
memory , These two statements t ake the same space in source
memory:

1 R~M 12J456789ABC
2 REM XX

7

?:::_ o·-- JI -"3RTING COMMANDS There are qui te a few commands that change the
or d er of execution of statements in the p r ogram . These follow :

Go-=o .. .

GOSUB ...

:=:xampl e: ·

GOTO 9900

=-ot allowe d:

':;0~0 -

= ~ : ac t, such variable addresses are not allowed in any
c: ~~e other flow diverting commands below.

S -,..;_-oroutine calling command . Example :

5 A=Z
7 GOSUB 13
8 B = 3

Hl END
1 3 A=A+l
15 RETURN

The statements are executed in the
order 5 , 7,13 , 15 , 8 ,1 0 .

8
ON ... GOTO ... Example:

The flow is:

5 ON M GOTO 10,20,30

if M=O
M=1
M=2
M=3
M=4

go
go
go
go
or

to next statement after 5
to statement 10
to statement 20
to statement 30
larger, statement after 5

There is no limit (except line
addresses after the GOTO.

length) to the number of

ON ... GOSUB ... Zxample: 5 ON ~ GOSUB 10,12,15,3

If Z=O or = is greater than 4 , go to the next statement.
If Z= 1,2,3,4 then GOSUB 10,12,15,3 respectively . Upon
RETURN , goto the next statement after 5.

IF ... GOTO ... Example: 10 IF A=2 GOTO 100

If A=2 then the next statement executed is line 100. If
A/2 then the next line after the IF ... GOTO ... is
executed. In place of "A=2" there can be any expression
that has a numerical value, or otherwise can be interpreted
as Boolean "false", i.e. false has the numeri cal value zero .
If the expression is not zero , then it is ass umed to be true.
This is a more extended interpretation of "true", which
should actually be the numerical value -1. Examples:

IF A$="DA" GOTO 338 .c

IF (INT(X) AND 12)=8 GOTO 4
IF y:-x > PEEK(Q) GOTO 65
I F Y GOTO 21:GOES TO 21 UNLESS Y IS NOT EQUAL TO ZERO

(IF ... GOSUB ...) Do esn ' t exist, use I F . . . THEN GOSUB .. . instead .

IF ... THEN... If the expression after I F is true, then all the
statements after THEN are executed . If not, then the
next line is executed. Example :

10 IF X<. 7.2 THEN X= 7 . 2:GOSUB 10:GOTO 30

FOR .. = ... TO ... Loops . There are several subtle points that are
important for trouble free use of loops, so thi s discussion
will be quite long. Example:

20 FOR I=l TO 3

30 PRINT I
40 NEXT I
5ll PRINT "I IS NOI-'1": I
93 END

OK
RUH

1

I IS NOI.:-1 4

... STEP

After entering the loop. you may jump out before the
normal exit. The loop variable retains its current value:

z~:f ~F()R-T,;,TIIJ 3 -~ - - ----

30 IF I=2 THEN 60
-40 NEXT I
50 PRINT u I IS t·'.Jot•l n ; I
55 END
60 PRINT I:END
99 END

OK
RUN
z

The stack still records that you have entered the loop
but not exited through NEXT. See the discussion under
STACK . You may jump back into a loop you have jumped out of,
but you may not jump into a virgin loop. Reading NEXT ...
without first going through FOR ... causes an NF ERROR break.

Increments other than 1 are implemented us i ng STEP:

Loops can

10 FOR X=2.1 TO 3.7 STEP
10 FOR X=100 TO -33 STEP
10 FOR X,;l- TO 10 STEP

be nested. (Up to 12 deep) .

10 FOR !=0 TO l:FOR J=S TO 6
30 PRINT I;TAB(5) J
40 NEXT J
45 PRINT •BETWEEN LOOPs•
50 NEXT I
99 END

OK
RUN

0 5

BETWEEN LOOPS
i 5
1 s -

BETWEEN LOOPS

0.:::J5
-10
.0 . .l•X

The index can be left off any or all NEXT statements in
the program, and when encountered, a NEXT will be
assumed to apply to the last FOR ... encountered by the
interpreter . But this is somewhat dangerous. The
variables are put on the NEXT statements to serve as a
check that the logic of the actual program is the logic
that the programmer intended.

10 FOR l-8 TO 1: F.OO ~ ~_J=S _ ,~:'f'O:;,flr-;:

30 PRII'fJT'~-=i -TfmtS1~ -' .J -
40 HE::«.: MEXT

9

10

The loop is always run at least once since the test for exit
occurs at the NEXT statement, after the loop variable
has been incremented. Example:

->V f-'\-<-'.11'{1 l

4\:::1 1-lEYT l.

()K.

RUN

Upon entering the FOR... statement from outside the
loop, the initial value of the loop variable is calculated,
then the value which determines the exit condition is
calculated . The increment size is also determined
(see STEr above). These values will not change during the
rest of the time spent in the loop. The statements
in the body of the loop will be repeatedly executed but
the FOR ... statement will not be again interpreted . Study
this example carefully:

..

10 A=0.6

<:::u FOR I=Z*A
30 pr;::un
40 NE:~<T

50 PPINT
00
-.J..J I:.: I'm

Ol<

RUI'i
1.2

I
I

"I

I IS !'!mil 4 . 2

10 3*1

IS NOl-"" ; I

In the body of the loop, the loop variabl e may b e redef ined:

20 FOR I=l TO 3
30 I=Z
40 NEXT I
50 PRINT "I IS NOW";I
99 END

OK
LOOPS FOREI..JER

DA TA ...

When the interpre t er encounters a NEXT I, it clears the
stack of any loop calls nested inside the FOR I= ... NEXT
loop. In the example below, looping over J is never done,
and when NEXT J is fina llv encountered, the stack has no
current record of a F OR i' , so a NEXT without FOR
error break occurs.

10 FOR 1= 1 TO 3:FOR J=1 TO 4
30 PRINT I;TAB(51 J

4 0 NEi<T I
S0 NL<T J
33 END

OK

1 1
2 1
3 1

?NF ERROR IN 50
OK

11

When loops end together , a shorter NEXT statement can be used:

10 FOR I =1 TO 3:FOR J=1 TO 4
30 PRINT I:TAB(5) J

4~1 ND<T J , I

39 END

For stor i ng initial data in a program. Exampl e:

10 DATA 6,7,8,X, "Y •• CHRS(131
15 FOR I=1 TO 3 :REOD A:NEXT
17 PRINT A
20 READ AS:READ BS:READ CS
30 PRINT A$,BS,CS
99 END

OK
RUN

8
X y CHRS<13l

rle~e =·: c..r:d "Y" ar e alternate ways to store string data .
=te v~3S (~ 3) ·s als o treated as a string, not a function .
~a~a state-ens a re reasonably economical of storage space .
::' .. e o· er~ _ead -=._s 6 bytes plus 1 byte each for commas, spaces,
or QUOtes. l -=._ ne 10 above uses 2 7 bytes to store 13 bytes
o ~ da a. Only the order of the data as it is stored in the
prcgra is ~.portant, not the number of data statements
used or their placement in the program . Example:

10 ~A TA 1 , 2 , 3 , 4 , 5
10 DATA 1 , 2
11 DATA J ,4, 5

is the same as

excep t the latter takes up more room
in memory.

12

READ ...

RESTORE

CLEAR

PRINT .. .

DATA statements cannot contain variables, or be moQified.
In the example beloiv , the interpreter treats the A as a
string of data, whi l e X is a numerical variable.

10 A=3
20 DATA A
30 READ X:PRINT X:END

01<
RUN

lSf'l ERROR IN ZPi

As the above examples show, entries in DATA statements
must be tra nsfered to other statements for use. As READ
statements "use up" data, a pointer is set to the next
avai l able data entry. The DATA statements are used in
numerical order in the source program , no matter where the
READ sta t ements are located.

10 DATA 1,2
20 GOSUB 90
30 READ B,C
40 PRINTA;B;C:END
9~ READ A:RETURN
92 DATA 3,4

OK

RUN
1 2 3

This command restores the above ment ioned pointer
to the first entry in the first DA'rA statement in the
program.

This statement discards the variable table (by resetting
pointers) so that it will start being reconstructed from new
as the program continues. It a lso has the effect of a
RK~TORE command on the DATA pointer.

The variable and expression values following the word
PRINT are displayed on the screen. In writing a source
program, the symbol "?" can b e substituted for the word PRINT .
PRINT without any expressions prints a blank line. There
are t wo kinds of separators in the list of items to be
printed following a PRINT command. They are comma and
semicolon. The comma organizes the material into 5
columns separated by 15 spaces. If the material in a
given column is longer than 15 spaces or otherwise would
overlap the next column, the next column is skipped. If
there are more than 5 items in the list to be printed, then
more than 1 line is used.

The semico l on puts the printed fields adjacent to each
other. Thus strings woul d be pr inted without spaces between
them. Example: 10 PRINT "A"; "Z"

RUN
AZ

-

...

But numbers have a space attached to each side so:

10 PRINT 1;2
RUN

1 2

Comma and s emicolon separators can be used in the same lis t .
Th e combina tions get complic a t e d and it is advised that you
ex p eriment to see d irectly wha t effects can be obtained.

FUNCTIONS FOR PRINT
sta t ements

There are t wo functions that are used i n PRINT
s o we t a k e them up here.

SPC(X)

TAB(X)

I NPU _ ...

This func t i on i s used in PRINT statements to add
spa ces between ou tputs from the list. The argument of the
function is a numeri cal constant, variable, or expression
that can t ake on value s between 0 and 255. If it is not an
integer value , it i s truncated to an integer value. The
va lue 0 i s interpre ted as 256. Large val ues will cause
the print i ng to c onti nue c~ the nex t line, or even later.

1 PRINT "123456789"
2 PRINT SPCC3l"A"
RUI·l
1L':J4':::.G?89

H

This f unction acts like the tab function of a type
writer . Example:

1 PRINT •123456789012345n
2 PRINT TAB(2) "A. TAB(10) "B.

OK
RUN
123456789012345

A B

This command allows input of data to the machine from
the keyboard or tape. It can be ~receded by a comment.

10 INPUT •LENGTH, HEIGHT•;L,H
20 PRINT •LENGTH •;L,.HEIGHT •;H,

OK
RUN
LENGTH, HEIGHT? 3,5,66.0
LENGTH 3.5 HEIGHT 66

Strings can also be entered.

10 INPUT •NAME.;NAS
20 PRINT NAS

OK
RUN
NAME? EDWARD H. CARLSON
EDWARD H. CARLSON

1J

14
If you input more numbers or strings than were asked for
an ?EXTRA IGNORED message appears, and the interpreter
continues with the program .

10 INPUT A.B.C

ov
RUN
7 2,3,4,5
?EXTRA IGNORED

If there is a type mismatch or other confusion to the
machine, it may issue a ?REDO FROM START instruction.
Then type all the data in from the start of the INPUT
instruction.

10 INPUT A,B,C
20 PRINT A,B,C

OK
RUN
? 1,2,A
?REDO FROM START
? 4,5,6

4 5 6

If INPUT requests more items than you supply, it will request
more with a double ??

10 INPUT •NAME·; NAS,A
20 PRINT LEFTS(NAS,1)
30 PRINT A

OK
RUN
NAME? ED
?? 2
E

2

If you answer (RETURN) to the INPUT (without giving a
numeral or string answer) the interpreter returns to the
immediate mode. You can do the usual poking and tweaking
and then return to the program with a CONT. The interpreter
will again query you with the INPUT statement.

DEF FN... Used to define a "user defined" function. The function
can be defined anytime before use. This is further explained
under the heading "USER DEFINED FUNCTIONS".

POKE... This command stores an integer N in a location X of
memory. Example: (Stores 5 in 57088)

10 X=2:KB=57088:POKE KB.Z•X+1

--·

..

P::<::CK(X)

STOP

END

An error is repo rted if th e number to be stored is out
of ran~e. Programs tha t unintentionally POKE values into
pages $00, 01, or 02 can cause very p eculiar errors as the
run continues , eventually BAS IC may become so scrambled
tha t a c old st2rt must be done . However, the most common
error can be fixed mor e eas ily. Since variables that haven't
been de fined a re treated as having value zero, it quite often
happens that addres s $0000 i s ruined. Then if the (BREAK)
key is hit, a warm start canno t be accomplish ed. This can
be c orrected by using the MONITGR to put $4C back into $0000.

This is a function, not a co mmand. But it is the
natura l opposite of POKE so we discuss it her e. PEEK
returns the value of the contents of address X. Of
course , the value li es in the range 0 to 255. Example:

10 I=3:PRINT PEEKCI*256)

OK
RU!·I

0

S TOP caus es an exit t o immediate mode with the
printing of a break message. Example:

10 FOR I=1 TO 10:PRINT I;
20 IF 1=3 THEN SlOP
30 rlEXl

Of<
~:un

1 2 3
BREAK IN 20
OK

This command is op tional under many conditions. If
the progr am reaches the last line of source code and that
line do esn't transfer the flow to another program line ,
the program ends and the machine exits to the immediate mode.
The E statement is necessary if the program is to end
in the midd l e of th e source code. You may have any number
of END statements.

10 A=2
20 IF A=10 THEN END
30 A=A+1:PRINT A;:GOTO ze

OK
RUN

3 4 5 6 7 8 9 10
OK

15

16

STRING OPERATOR

There is only one string operator , concatenation, using a + sign.

10 AS=" 1 " : BS=" W
20 CS=AS+BS
30 PRINT A$,B$,C$

OK
RUN
1

OK

A 1A

All strings that are not contained in BASIC source code statements
are stored in "s tring memory" at the end of RAM memory . In the
example above, A$ and B$ are stored in line 10 of t he program as
you see, but C$ is stored in the top 2 bytes of RAM memo r y.

-~-
I
+

NUMERICAL OPERATORS

Negation
(SHIFT/N) Exponentiation
Multiplication
Division
Add ition
Subtraction

- 5, - N1
2 3=8

The above numerical operators have their usual meanings in
arithmetic and algebra and may be used with parentheses to make
explicit the order of evalua tion. Inappropriate order may give
an error message. Consider the following examples done in the
immediate mode:

?2*-J get - 6
?2--l'<J get SN ERROR
?2+++J get 5
?2 -1 .5 get 0.353553
?2-A1 .5 ge t SN ERROR

BOOLEAN OPERATORS

These operators return values of -1 for TRUE and 0 for FALSE.
Why these particular numerical values? Well , zero for FALSE seems
reasonable enough , and then TRUE should be NOT 0 . But in two 's
complement form , NOT %0000 0000 0000 0000 is %1111 1111 1111 1111=-1 .
The % tells us that the number is i n binar y form, and you may want
to consult the sections on TWO'S COMPLEMENT NUMBERS and BIT
MANIPULATION OPERATORS.

) Greater than
< Less than

< > or <) Not equal
= Equal to

<= or = (Less than or ec;ual to
>= or =) Greater than or equal to

--·

Examples :

10 X=Z:PRINTZ=X:X=Z:X=3 : X>3;X<3

01<
RUN

2:0 PRI NTY

·-1 - 1 0 0 -1
01<
RUN

0

Two strings can be "compared " by using the se operators. By this
lS mean t only that the first char ac t e r of each string is treated as
an ASCII (or other) number. Then the s e 2 numbers are compared.

10 AS= "ABC":BS=CHRS(80)
20 PRINT A$,BS
3 0 PR I NTASC (A$ J , ASC C8$)
4E! PR: Ir--iTA$ >B$

OK

RUN
ABC

65
0

p

80

BIT MAN IPULATION OP£RATORS

..

Number s that are in the range of - 32768 to +32767 inclusive are
treated as 16 b i t t wo ' s c omplement numbers by the following opera tors .
(Truncation to i n tegers is performed, if n ece s sary .) Consult the
appropriate section f or a n explanation of two's complement b inary
number s . Some examples:

AND

20 PRI NT 1 OR 2;1 OR 3000
30 PRINT 1 AND 2
40 PRINT NOT 2E6

OK
RUN

-:> -20001 "-

3 3001
0

?FC ERROR IN 40
OK

~or eac h b it in the pair of numbers connected by AND,
the corr esponding bit in the result is 1 if a nd only if
both t h e b its are 1. This is most easily seen by an example
in b inary nota tion :

%01 01 1111 1100 0000 AND
11 00 1010 0000 1111 = 0100 1010 0000 0000

17

OR Inclus ive OR. The result i ng bit is 1 if ei ther (or both)
o_· the g i ven numbers have a 1 for that bit position.

01 01 1111 1100 0 000 OR
11 00 1 01 0 0000 1111 = 1101 1111 1100 11 11

18
NOT Each bit of the number is reversed, 1 for 0 and 0 for 1.

NOT 0101 1111 1100 0000 = 1010 0000 0011 1111

USER DEFINED FUNCTIONS

Func tions can be defined any time before use by a DEF FN ...
statement. Functions can be redefined any number of times. The
definition may involve other user defined functions but may not
be recursive (i. e. the definition of a function cannot involve itself) .
The function has 1 variable but other parameters can also occur in
the definition and wil l be given their current value s at the time
of use. Any number of functions can be used in one program. S tudy
this example carefully:

10 DEF FNACX) =X
15 X=2:PRINT FNACX ;
20 DEF FNA(Y)=2•Y
25 Y=3:PRINT FNA(Yl

OK
RUI'l

2
6

Not allowed: FNA$(X), FNA$(X$), FNA(X,Y), FNA(A$). Function
variables are stored in six bytes, among the numerical and string
single variables. There is an $80 added to the first byte of the
name to signify tha t the variable is a user defined function. Note
that one is allowed to have all the following 5 variables in the
same program because they are always stored under different names
or in separate parts of the variable table.

A B , A B$, A B (I) , A B$ (I) , FNA B (I)

STRING FUNCTIONS

Str ing functions either have a string as an argument, or yield
a string as a value, or both. Those that return a string value
have a name that ends in$.

ASC (A$)

CHR$(A)

Returns the ASC II value (decimal integer) of the first
character in the string A$.

Returns the character whose ASC II value is A. If you
have the graphics chip, CHR$(A) will print the corres
ponding graphics character for A such that O~A~255.
This program prints al l the graphics characters
(except for I=O, because the CRT routine at $BFJ8
ignor es nulls). When line 10, line feed, is printed,
a line feed occurs. When 13, CR is printed, a carriage
return occurs. (I. e. the cursor moves far left
on the TV screen.)

LT:'F T$ (A$' I)

RIGHT$(A$,I)

MID$(A$, I ,J)

J-'EN (A$)

STR$(X)

'.rAL (A$)

FRE(A$)

1 ~ fOR 1=0 TU 2 S5
2U ;..:$= CHR$(I -J

3(l Y=flSC:(>': t :)
_,. ~j t-'r=;~INT ><1£; \'
SC~ l···iE ::<T

Gives the le ft most I characters of A$. If I=O there
is an ?C ERROR reported.

Gives the right most I characters of A$. If I=O an
FC ERROR is returned.

This is intended to give a string J characters long,
starting at the Ith character of A$ and continuing to
the right . Bu t in no case is MID$ longer than from
the Ith character to the end of A$ inclusive, even for
large J . If J is omitted, then MID$ goes to the end
of A$. I f I>LEN(A$) then MID$ is of zero length.

Returns the length of A$

Gives a string which lS a representation of the
number X. Example:

10 N=6.1d221=":23

19

20 N$= • AVOGADRO' S NUMBER IS "+STRta N)
30 PRINT NS
4~ PRINT LEN<STRS(N)l

OK
RUN
AlJOGADRO'S NUMBER IS 6.023E+23 .

10

Note: You see only 8 characters for N in line 10,
but a blank is a ttached to each end in making
STR$(N), for a total of 10 characters.

The opposite of STR$. If A$ is a string representing
a number, \!AL returns the corresponding value as
a decimal number. If A$ does not represent a .number,
"AL returns 0. Examp l es: ·

18 ,._. -fit .. eli£-~:J.
2B . BS;,.,~R!.
30 .'PRlN.T:' UAL(f(SJj ~('-~ . · •., • · .. ·- · ·-~~---

OK
RUN
-SE-23

The same as FRE(B), so why bother?

·I ..

20

NUMERICAL FUNCTIONS

In the following functions, the argument may be any constant,
variable or expression that has a numerical value. Example in the
immediate mode:

ABS(X)

INT(I)

SGN(X)

RND(X)

SQR (X)

EXP(X)

LOG(X)

SIN(X)

COS (X)
TAN(X)
ATN(X)

FRE(X)

? EXP(NOT 1.1) get 0.1J5JJ5

Yields the absolute of X. For X=2, 0, -2 it returns
2, 0, 2 respectively.

Truncates decimal number to an integer. For I =1.1, 0, -1.2
it gives 1, 0, -2 respectively.

Gives the sign of X. For X=O, there is no slgn. For X=
2, 0, -2 it gives 1, 0, -1 respectively.

This is a pseudorandom number generator . If the argument is
zero it gives the same number as the previous call gave. If
the argument is negative, it alters the generator in a way
that makes the numbers unpredictible, but not evenl y spaced
between zero and one . In ordinary use, the argument is a
positive number (it doesn't matter which one) and a p seudo
random number between 0 and 1 is returned. The generator
has a period of 1861. That is, only 1861 separate "random"
numbers are produced and then further calls repeat this
sequence in the same order . A generator with a longer
period is presented after the section on NEWSLETTERS.

Square root , for positive arguments only. Example:

PRINT SQR(1000090) get 1000 . 05

Exponential eX Where e=2.?1828

Naturar log. You can obtain the log to base 10 by using
LOG(X)/LOG(10) . The argument X must be positive .

Sine of X where X is in radians. The conversion that 180°
is pi radians is needed to work problems where the angles are
expressed in degrees. These trig functions seem accurate
to within the number of digits shown on the screen.

The cosine, tangent and arctangent are likewise defined for
arguments in radians.

This function returns the number of bytes in RAM (that have
been allocated to BASIC at coldstart time) that have not
yet been used to store source code, variable tables, or
strings in high memory. Example for a 4K machine whose
memory was set to 1032 at cold start time:

10 PRINT FRE(8)
20 A$="A":PRINT FREC8)
30 AS=AS+AS:PRINT FREC8l

OK
RUN

2 12
206
204

TAB (X)

SPC(X)

POS(X)

USR(X)

PEEK(X)

The value of the argument doesn't matter for this function .
I use 8 because it is near the () keys. In the above
example, the first FRE printing gives the bytes free after
the source program is stored. The second shows that a
variable has been entered in the variable table , taking
6 bytes . The third allows for the string "AA", 2 bytes
long, stored at $OJFD and OJFE. When FRE is called , it
performs a "garbage compaction" of the strings stored
in high memory, discarding the no longer used strings and
compacting the rest into highest memory . This may give
a problem if string arrays are present. BUGS AND FIXES
discusses this problem.

Discussed at the PRINT c ommand.

Likewise

Intended for use with terminal s. It gives the current
location of the curs or on the TY screen. In this example
the cursor starts at 0. The string " 0 " is printed .
The cursor is then at 8. The string " 8 " is then
printed in positions 8, 9, 10 .

1121 PRINT "121123456789 "
2121 PRINT POSCX) SPC<Sl POS<X>

OJ<
RUN
121123456789

121 8

See the separate discussion of the use of this function that
allows one to interface machine language subroutines to
BASIC programs.

Used to return the numeri cal value (decimal) stored in a
given memory address . See commands after POKE

WAIT I , J ,K Us ed to interogate a memory location , especially an
input or output port flag register. The memory location I
(decimal) is exclusive OR'ed with K and then ANDed wi t h J .
This is repeated until a non-zero result is obtained , upon
which the execution of the next statement is begun. While
WAITing , the machine is immune to being stopped with the
(CTRL/C) command. Examples of use are given under TAPES .

DIM(X,Y, ...) Used to assign dimensions to the indices of an array.
See the dis cussion under ARRAYS. Its most familiar use is
with constant arguments at the beginning of a program:

10 DIM U1(16)
but it can be used with var iable array sizes :

10 I NPUT N,I
20 DI M ER(2*N+1,I) ,L (I)

21

22
USR(X) FUNCTION

MACHINE LANGUAGE SUBROUTINES IN BASIC

You may need a machine language subroutine which can be entered
from BASIC, do its stuff, and then return control to the BASIC
program. This is done with the USR function. If desired, the
argument X of USR(X) can take a two's complement 16 bit number to
the subroutine. Also, two bytes can be returned to BASIC as
the value of USR(X). Each of these transfers is a little involved,
so first we will demonstrate the simplest case, where the subroutine
is called, but no numbers are passed either way. Write a BASIC
program:

2,0 R=USR(S)
5,0 STOP

Now (BREAK) and hit M to enter the monitor, and place these numbers
at the addresses shown:

address
$000B

oooc
0222

code
$22

02
60 $60 is op code for RTS

The address $0222 contained in the two bytes at $OB,OC is the
starting address of our program. It is stored "backwards", $22$02,
as is usual for 6502 machine language addresses. Actually, our
program is extremely short, consisting of only one instruction ,
RTS , which means "return from subroutine" . Now do a (BREAK),W
for a warm start of BAS IC , and RUN. If all is well you will hit the '-
STOP in line 50 and see BREAK IN 50 on the screen.

It is awkward to ·have to put the addresses in $OB, OC so we add:

2 POKE 11,J4:POKE 12,2

to the BASIC program. Of course, one must make the hex to decimal
conversion $22=34 and $02=2 in order to be able to write this line.
It is also commonly done to poke the machine language program in
from DATA statements. See the BASIC TRACE for an example of this .

The next more complicated situation is to pass a valueS to
the machine language program. Add to the BASIC program:

5 INPUT "S";S
40 PRINT TAB(15) "R="R, "S="S
99 GOTO 5

(BREAK),M to the monitor and enter code starting at $0222 :

$0222 20 40 02
A5 AE
BD 20 D2
A5 AF
BD 22 D2
60

JSR
LDA FACHI
STA left byte on the screen
LDA FACLO
STA right byte

0240 6C 06 00 JMP indirect

The a ddress $06 in page zero is called a pointer. That means the
conte nts of $06 ,07 is a t wo byte address, in this case $AE05. This
address is the entry point to the subroutine INVAR which takes S and
c onvert s it to a 16 bit two's complement number and puts it in
$AE ,AF , high byte first.

Our subroutine must pick it up from there for use. In this
case we poke it onto the screen as two gra~hics symbols, one for
each byte. To see all this action, (BREAK),W for a warm start and
RU N. Notice that th e value of S in BASIC is unchanged by all this,
and R has some peculiar va lue. The business with the JMP indirect
wa s to allow use of the pointer bu t not force a premature return
to the BASIC program.

The last step in learning to use USR is to write a machine
l anguage subroutine tha t will return 2 bytes to BASIC. It must
put them into the Y register and the accumulator, Y being the
lov,r byte of the 16 bit number. Then a ::.~ outine called OUTVAR entered
a t $AFC1 point ed to by $08 takes these bytes and sends them on to
the BA2. IC prog ram. Add to the previous BASIC program:

5 INPUT "A,Y,S";A,Y,S '
8 Q=Y~256
9 POKE Q-2,A:POKE Q-1,Y
4y5 PRINT TAB(15) "A,Y>R="R,"S"S

(BREAK) ,M to the monitor and add to our previous program:

$022F AC FF 02
AD FE 02
6C 08 00

LDY Y
LDA A
JMP indirect

(BREAK) , W and RUN . The variable R is now formed from the 16 bit
t wo's comp lement numb er. R is of c ourse a floating point number.
Pl a y a round with t he p r ogram. Wh en the value of A is made higher
than 1 27, the value of R will b e negative. Of course, both A and
Y must be in the range 0 to 255.

1 REM *** USR(X) DEMONSTRATOR ***
2 POKE 11,34:POKE1Z,Z
S INPUT "A,Y,S " ;A,Y,S
l::l 0=3*256
~POKE Q-Z , A:POKE Q-i,Y
20 R=USR(S)
40 PRINT TABC15) · A,Y>R="R,·s="S
42 REM A=HI,Y=LO BYTE OF RASA 16 fliT TWO'S COMPLE11ENT ·NUM.BER
S0 Pf..(INT
~g GOTO 5

2J

24

ARRAYS

Numerical arrays and string arrays are similar in all respects
except for the value stored - in the 4 bytes of each element . The
value for a numerical variable is a 4 byte floating point number.
The "value" for a string variable is the string length (given in 1
byte) and the address of its first byte (given in 2 bytes). The
fourth byte is always zero. If the string was given as a constant
in the source code, then that is its storag0 place. Otherwise, it
is stored in string memory at the end of RAM.

Arrays can have from 1 to 11 indices. While only integer
indices make sense, the interpreter will accept non-integers, by
truncating them. A(I,J,K) has 3 indices, and XZ(R)has one. The
indices take on values zero through a maximum given by a DIM statement.
DIM A(2) sets up an entry in the variable table for A with 3 elements
A(O), A(1), and A(2). If no dimension statement is encountered
before an array is used, the dimension of each index defaults to 10
(so the index is allowed to take on the 11 values 0 through 10).
The maximum size any index can be assigned in a DIM statement is
32767, but with 4 bytes per element (plus overhead bytes), obviously
real arrays must be much smaller than this. An array can be dimensioned
only once, either by a DIM statement or a default. Space in the
variable table is assigned to the array at the time of dimensioning,
and all elements are set to zero. Any number of arrays, DIM statements
and arrays per DIM statement can be used.

The total space an array occupies in the variable table is shown ,
by considering DIM A(5,6,7): -..__

3
2x3
6x7x8
x4

overhead (name and number of indices)
2 bytes for each index (to give its maximum size)
number of elements in the array
4 bytes per element

Then the total size in the table is 3+2x3+(6x7x8)x4=1353 bytes.
All arrays are stored after all single variables in the tables .
Arrays are stored in the order they are first encountered (in a DIM
statement or by use) in the program, regardless whether they may
be string or numerical arrays.

-

BUGS AND FIXES

There are 2 bugs. The first may occur on a warm start.

Becaus e t h e stack is not initialized on a warm start, an OM ERROR

may occ ur . To avoid this I have made a habit of hitting some key,

us ually P , and (RETURN), after every warm start, and accepting

the e rror, to clear the decks .

The other bug is more serious, but only occurs in programs

t hat have string arrays. It is called the "garbage collector"

bug . The garbage collector is a routine at $B147 that is called

under 2 conditions. It is always called by FRE(8) . It is also

called when memory fills up because the variable table growing upward

in memory and the string storage growing downward from high memory

have collided. Usually string memory contains a lot of abandoned

strings, "garbage" , so by discarding the now unused strings, some
..

memory will be freed and the program can continue. An example of

how string garbage forms is given by this program:

10 A$="D"
2 0 FOR I=1 TO 100 : B$=B$+A$:NEXT
J O B$="X":GOTO 20

Each time B$ i s r edefined in line 20 , the new B$ is stored

in high string memory, without erasing the previously defined B$!

The bug has a simple origin . In the garbage collector routine ,

there is a "J " which should be a "4" . Remember tha t the "value" of

a string array is stored in 4 bytes, but only J are actually used .

MICR OSOFT must have changed its mind part way through development

of the interpreter , and forgot to change the garbage collector.

They have , of course, long since corrected the error and notified

their customers , but OSI had already masked its ROM ' s and it was too

late .

There are two fixes that can be tried , both published in

PEEK(65) V. 1 , no . J . The easiest fix comes from Mark Minasi .

Simply pick the dimension of each string array to be J*(any integer)+2

This often works and is usually no hardship because there will be

s u ch a numb er near any desired array size. The other fix is complete,

and was giv en by Stan Murphy. It consists of changing the J to a 4,

but r equires moving the whole garbage collector routine to RAM. The

follo wi ng program does this . It takes up 261 bytes of RAM . (You

need not reserve this at cold start time. The pointer to the end

25

I

26

::

of BASIC memory is automatically adjusted.) The garbage collector

is called by the statement X=USR(X), and must be called oft e n

enough to prevent the "real" flawed garbage routine from b e ing

aut omatically called into action.

1 REr1
2 REM
100 REM
101 REM
107 PRINT
108 GO SUB
109 GO SUB
115 PRINT
116 GO SUB
120 GO SUB
125 GOSUJ?
126 PRINT
1210 END
S00 REM
502
504
S06

REM
REM
REM

*** GARBAGE COLL~CTOR ***

*** DRIVER ***

FRE(8)
9800
9850
FRE(8):REM LS HASN' l BEEN DEFINED YET
9860
500
9860
FRE< 8): RHI HANGS BECAUSE OF LS FROM LINE 520

*** GARBAGE MAKER ***

By Stan Murphy

510
520

INPUT O,K:REM TRY 20,26
DIM LS(Q)

.53e FOR I=1 TO Q
540 FOR J=l TO K: LS(1)=LS<Il+CHRS(64+J)
SS~LNEXT J
~55 X;=USI:H X l

,.

' : 5"10 PRINT LS<U, I: t..iEXT I
, .• &99 RETURN

·: .1001i:J REM
·:;' !::1800 REM ••• GARBAGE COLLECTOR ***

.,9801 REM
~802 REM
8803 REM
~805 REM

By Robert Badger, PEEK<65) V.l, no.B, p.Z0
after Stan Murphy,PEEK(65) V.l, no.3, p.4

~806 REM Note: Uses up 261 bytes EACH time it is cal led!
!::1808 REM
8810 L=PEEK<l34l*256+PEEK<133)-262:GH=INT(L/256l:GL=L- 256*GH
9815 POKE ll,GL:POKE 133,GL:POKE lZ,GH:POKE 134,GH
8820 FOR I=0T026l:M=PEEK(I+45383l:POKE I+L,M:NEXT I
8825 POKE L+67,4:POKE L+216,Z:POKE L+2l"l,Z4:FOR I = lTOS:READ AD,I"':M=M+L
9830 AD=AD+L:POKE AD,lNT(M/256l:POKE AD-1,M-INT(M/256l•256:NEXT 1
9835 DATA 59,140,34,146,84,209,137,146,261,4
!::1840 PRINT •GARBAGE COLLECTOR LOCATED AT"L "GH"GH"GL "GL
!::1845 RETURN
9850 DEF FNF<Il=PEEK(129l - PEEK(127)+(PEEK<130) - PEEK<128))*256
9851 RETURN:REM THIS INITIALIZES THE "FRE" FUNCTION
9860 PRINT FNF<Il"BYTES FREE.:RETURN:REM "FRE" FUNCTION

SPEED, SPACE, AND CLARITY

As your programming skills grow and you tackle more demanding
tasks, you begin to encounter failures of three types: the program
runs too slowly, takes up too much memory or becomes so complex and
unwieldly that you lose comprehension of what you have done. Here
is a unified scheme to tackle all these problems at once, making
an optimum compromise between the conflicting requirements of
clarity on one hand and space on the other.

First speed, since it is the key to the whole scheme. The
central results of the timing tests I published in kilobaud MICRO
COMPUTING (November 1980, p. 128) are clear. The two procedures
most responsible for the slow running of unsophisticated BASIC
programs are:

1) Conversion of decimal constants to floating point binary
numbers.

2) Searching for the target lines of GOTO's, GOSUB's, etc.

Either of these procedures can be very costly if repeatedly
performed in loops, especially in the intermost loops ' of a nested
set of loops.

Converting decimal constants to floating point binary numbers
takes about 1.1 ms per digit. Note the difference in the running
times of these two (crude) screen clear programs:

1~ FOR I=~ to 2~47 5 Q=53248:B=65
2~ POKE 53248+I,65 1~ FORA=QTOQ+2%47:POKEA,B:NEXT
3~ NEXT
25 seconds 8 seconds running time

(Actually, they fill the screen with the letter "A".)

The cure is to assign variable names to all long constants
during the initialization phase of the program. E.g. KYBD=57088.
In extreme cases, even one digit constants should be declared as
variables, e . g. N~=~, N1=1, .. . N9=9.

The target line numbers in GOTO and GOSUB statements must be
converted to 16 bit integers at each encounter, so it takes a
little longer (0.2 ms /digit) to process GOTO 25%~~ than GOTO 5.
This is one reason to put "popular" subroutines at low program
line numbers. The other reason is more important. A search for a
line starts at the beginning of source code and requires 0.85 ms
per line inspected. Lines numbered 2 to 9 would be best, if the
routines are short enough.

It then follows that initializing procedures (done once at
the beginning of a program run) should be located in statements at
high line numbers, since they are executed only once . This leaves
middle memor y for the "main loop" of the program, the one where the
main logic i s blocked out and which makes frequent calls to the
"popular" subroutines at low line numbers and infrequent calls to
subroutines at high line numbers.

So much for speed, now clarity. The initialization code
should contain many REM's, should explain variable names, and should

27

28

give an outline of the opPration of the program. It also he lps
clarify things if all the programs you write have a similar format.
Start all new logica l sections on "even hundreds" l ine number s
and always start the main loop at 100 a nd th e initializa t ion at
1000. These numbers may sound a little low to those of yo u used
to renumbering each program with an interval of 10 between lines ,
no matter how large the numb ers may get. But remember th e convers ion
time required to process t a r get line numbers! Small line numbers
are best and so I space my lines 2 to 5 numbers apart.

All this suggests a standard format, given below. The for mat
adds to clarity and eas e of writing by including (at standard line
numbers and with standard va riable names) those utilities that are
used again and again, such as rapid screen clear, keyboard POKE
and screen corner addresses, score writing subroutines, e tc. I
put utiliti es in l i nes 9000to 9999, and tape the whole format.
Then when starting to wri t e a new prog r am, I just read in the
format, and begin to add code (and drop unwanted lines of the format) .

DEBUGGING AND UTILITIES

Effort spent in l earning to us e th e available facilities and
in developing some utilities will enable you to perform your
debugging chores efficiently . The resources are divided into
three classes.

Editor: Whil e RUNning your program, it may stop because you hit
(CTRL/C) , or the program reached a STOP, ENu , or ERROR IN ...
Then you are back in the immediate mod e, wondering what happened. "-
Take your time and think it through. To . clarify things, you can
print out variable values singly, or with one line programs (no
line number!) to display arrays. You can alter variable values
with these one liners, and do any variety of LISTings. You can
poke around and think as much as is necessary, jus t so long as you
do not add, delete or change any numbered lines (which would
destroy the variable table.) When all is set, you can use CONT
to continue the program from where it stopped, or use GOTO ...
or GOSUB . .. to start elsewhere, and still pres erve the variable table
created by the running of the progr am up to th e present moment.
However, if you alter, add or dele t e any lines, your onl y choice is
to start again from the beginning.

Insertions:While building a program, you may insert STOP or PRINT ...
statements to help pinpoint program malfunctioning. You may also
want to insert some FOR I =1 TO 5~~~:NEXT delay loops to slow
down the program for be tter observation of its functioning. After
the trouble is fix ed, you remove these diagnostic tools.

Utilities: A package of short BASIC programs can be put into high
line numbers and used during program construction and debugging.
They need not be included in the tap e of the final product. Some
useful ones are:

Hex to d:?cimal
Dec imal to hex
Line renumb er
Tape view
Screen dump (if you have a printer)

/
l

Branch locator
Variable cross reference table generator

The most useful renumber program wil l allow you to renumber one
or a f ew l ines without changing the rest of the program . Tape view
is u s e ful to display another BASIC program on the screen so you
can see what you d i d , without overwrit i ng your current program in
memory . Branch locator is use f ul t o pinpoint those lines targeted
by GOTO 's a nd GOSUB's . Also it h elps unravel the structure of
foreign programs that swim into your possession . Likewise , a
Variable Cross Reference table p inpoints variable usage and variable
mispelling a nd is n ece ssary if y ou are going to condense code by
reusing variable names in a long program .

PROGRAM FORMAT AND UTILITY PROGRAMS

GOTO 1000 :REM *** PROGRAM NAME ***
"F:E H R emOt} e ai l f ~~ee stan di ng F;:: E!'(s: i n l ines

3 REi'1 2 TO 5 9 :=1.

S FLM " Pc pu I a r-" s ub r ou tines in l i nes 2-39.

c:. REJ·!

100 REM MAIN LOOP IN LINES 180 fO 939
~~g ST (JP

1Cl00 RU1

100 1 REM *** PROGRAM NAME ***
11102 RE11
11<:1113 REI'1
1004 REI'1
1005 REM
1006 REM
10ii'r? REM

Edward H. Car l so n

3 8"('2 Ra I e igh Dr.

Ok e mo s MI 48864
(5 17) 3 49 - 12 19

1100 KB=57088:REM KEYBOARD
1105 SC=53248:REM SCREEN CORNER
8339 GOTO 100
8800 RU'i
~:M01 REM **-* MENU ***
~1102 RE I1
8007 PRINT:PRIHT:PRINT:PRINT
~009 MENU" PRINT "9000
81d10 RAPID SCREEN CLEAR" PRINT "9100
!3k:ll2

9015
9 i2l 2 0
8030
:;03 5
9037
:J03E:!

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINl

"9200
"83 10
"9410
" 9500
0 9600
"9"?00
"9800
"9':300

PRINT Ar
DECIMAL TO HEXM
HEX TO DEC IMAL"
ERROR CODE FIX"
S CREEN DUMP"
BELL"
RANDOM NUMBER GEI-IERATOR
LINE RENUMBER "

PF:INl "E l000 9060 CROSS REFERENCE GENERATOR"
:J<Jb2 PFU HI "E::2000 BRANCH LOCATOR"
9089 PRINT : PRINT:PRINT : STOP

29

~ 0

~::H0~

~:H01

9102
810::3
~.::1104

:.::1110
91.12
8114
!::!119
9200
8£'01
9202
:.::1203
9204
!::!210
9300
8301
:::1302
9304
9310

~~ Lf,.l

r;~Ef·i -:ii·:if.*- R~i r: lU SC F-.:LEJ~ C.L_t . : ~i< :'.;. ~ .- ~.

REI'1

RLM F r om ~ i! cb aud M i LROCOM~UiiNG s omewhere
RU'l
AA=F)E.tJ< (12~) ~ BB=P[[k: i. 1 30 .i ~ t-'·()1-< E 1 2~ .~ ~~~.}:-:;: F'C)t(L. 130. ~ :~~· 1::1
D$="
FOR I=l TO 35:U$=DS+ "" :NEXT:PUKL 12S,AA:POKE 130,BE :RE1URN
PRINT "900D MENU"
REr'i

REM *** PRINT Af ***
RH1
REM Roger Ulse n, Aardvark Catalog
REI"!
FORY=lTOLENl D$):POKED+Y,HSCCMIU$(DS,Y.l J): NEXlY:RETURN
REt1
REM *** DECIMAL 10 HEX ***
REM
INPUl "DECIMAL NU!1BER ·' ; li: GOSUB 93H:l: f-' RlNT D$: GOTO 9300
GS="0123456789ABCDEF ": lF N>65535 THEN PRINT"ERROR "

9312 DS="" : F=4096: FOR I=l IU 4:Nl=INT(N/FJ
:.::1314 N=N-N1*F :D$=D$+MIDCG,Nl+1,ll:F=F/l6:NEXT I:RETURN
9400 REM
:::1401 REM *** HEX TO DECIMAL ***
9402 REt•1
9405 INPUT"HEX 4 DIGIT NUMBER";D$:GOSUH 9410:PRINT D$:GOTO 94~0
8410 N=0:L=4096:FORI=1T04
8415 M=ASC(M1D$(D$,I, 1)) - 48
~420 IFM>9THEN M=M-7
:::1425 N=N+M•L:L=L/16:NEXT:D$=STR$(N)
9430 RETURN
9500 REM
9501 REM *** ERROR MESSAGE CORRECTOR ***
3502 REM
~504 REM
:::1505 REM
::JS06 REM

E.D . Mor ris Jr. and Tim Finkbeiner
MICRO Nov. 1980, p . 30:37

9520 DATA 72,173
9530 DATA 64,215:REM SUPERBOARD 101 ,211
8540 DATA 201,63 ,208,8 ,173
9550 DATA 66,215:REM SUPERBOARD 103,211
9560 DATA 41,127 , 141
9570 DATA 66,215:REM SUPERBOARD 103,211
9580 DATA 104,76 , 195 , 168,0,0
9590 FORX=576 TO 597
9592 READ Q: POKE ><, Q: NEXT
8594 POKE 4,64:POKE S,2:LND
!::!600 REM
9601 REM *** SCREEN DUMP **8
8602 REM
9603 REM USEFUL IF YOU HAUL H PR lNf ~R. BUT WILL DEPEND
9604 REt•! ON \'OUR PFtRT I CULAf~ !·iP:CH Hlt.::.
9605 RD·l

::!1'00 kE!-1

3-(01 REi'i
~?!2<2 REM
9703 REM 1 have added a speaker to my C2-4P.
~705 FOR 1=0 TO 200:POKE AC,0:POKE AC,ZSS:NEXT !:RETURN
~706 POKE AC,0:POKE AC,255
~?08 NEXT I:END
3900 REI'"1
~901 RE!"'!

3302 REl'1
••• LINE RENUMBER ***

3310 H-lPUT" FROI1 . . . TO."; NF, tiT
3915 NH=INTtNT/256l:NL=NT-NH•256
8920 FOR I=768T040000:B=PEEKll):lF B<>0 THEN NEXl I
9925 N=PEEK<I+3l+PEEK(I+4i•Z56
8926 PRINTCHR$(13)N;
9930 IF N=NF THEN POKE I+3,NL:POKE I+4,NH: END
3340 IF N>9S99 THEN END
~945 I=1+4:NEXT 1

TAPES, BASIC AND HOMEMADE

Ever wonder wha t is on the tapes of your programs that you
have SAVED? It is no t what is in memory, exactly! It is more
like what is on the screen as you LIST. Suppose your source
program were:

1 AAAAA
2 BBBBB

Of course this program won't run, but its code is in memory.
Suppose that you do a NULL 2 in the immediate mode and then
a SAVE, LIST to put the program on tape. The code on tape is
ASCII (no tokens) whi ch we here represent in d~cimal numbers.

13 0 0 0 0 0 0 0 0 0 0 10 0 0
13 0 0 0 0 0 0 0 0 0 0 10 0 0 32 49 32 65 65 65 65 65
13 0 0 0 0 0 0 0 0 0 0 10 0 0 32 50 32 66 66 66 66 66
13 0 0 0 0 0 0 0 0 0 0

where 10 is line feed
32 space
13 return (or carriage return CR)
49 1
50 2
65 A
66 B

The two nulls after the 10 (line
command. Default is zero nulls .
and ten nul ls (see support ROM at
and the tex t. An empty line is
starts.

feed) are the work of the NULL
Each line begins with a CR
$FF7B) followed by a line feed
sent before the BASIC program code

j1

32

The OSI system differs from some others in that you can add a
program to one already in the machine by ro~ding it in fr om tape .
Of course no line numbers can be the same in the two programs, or
more exactly, all the line numbers of one must be above a ll the
line numbers of the other, so that the flow of execution cannot
get mixed between them .

The tape port address of a C2 or C4P is at $FC~~= 64512, and
for a C1 or superboard II is at $F~~~=61440. You might want to read
your BASIC tapes with a program like this:

1 Q=64512:R=Q+1
4 lnJAIT Q,1
5 PRINT PEEK(R):GOTO 4

But this program WON'T WORK for reading BASIC because the PRINT is
too slow and so you will skip some bytes. This program will work
for reading your own tapes if you space the bytes out a little
when making the tape, more later.

You can read a BASIC tape by storing the bytes in an array:

1 DIM D(2~~)
2 Q=64512
3 R=Q+1
4 WAIT Q, 1
5 D(I)=PEEK(R):I=I+1:GOTO 4

When you get an error break because you tried to fill D(201),
you can enter this line in immediate mode to see the output .

FOR I=1 TO 2~~ : PRINT D(I);:NEXT

The problem here is that the first part of D may be filled with
noise characters from the "blank" tape . You may have trouble deciding
where the taped program starts .

If you want to store some data generated by a program onto tape , you
can go two routes. If the amount of data is relatively little, so
that time to tape and read is not important, then you may use
the functions already in BASIC, such as PRINT, INPUT, SAVE , and
LOAD . Here is a program to illustrate that.

10 REM
15 ~EM

*** PROGRAM TO GENERATE DATA AND SAVE IT ***
~0 DIM Y<20l:FOR I=l TO 20 :Y (Il=I:NEXT
~0 SAVE:FORI=l TO S:PRINT 0:NEXT:PRINT 255 :REM LEADER
40 FOR I=l TO 20 :PRINT Y<Il:NEXT
b0 LOAD:REM TO EXIT FROM SAVE
65 PRINT •HIT (SPACE BAR) TO UNLOCK KEYBOARD"
?0 END

*** PROGRAM TO READ lAPE ***
1001 RU·l

1005 DIM YC20l:LOAD
1010 INPUT X:IF X<>0 THEN 1010
1020 INPUT X:IF X=0 THEN 1020
1030 FOR I=l TO 20:INPUT YCll:NEXT
l040 PRINT "HIT SPACE BAR TO CONTINUE"
1050 FOR 1=1 TO 20:PR1NT YCI);:NEXl
~999 END

And here is a program to read the data generated. Both programs
can be in the machin e at once. To wri t e to tape do RUN. To read
from t ape do RUN 1~~~. Line JO puts a leader on the tape that is
recognized by lines 1~1~ and 1~2~ . Lines 6~ and 1~4~ allow one to
get out of the LOAD mode. The LOAD in line 60 is to get out of the
SAVE mode.

A faster way to store data from an array to tape lS to use this
program.

1 DIM D(2~~)
2 GOSUB 1~~:REM TO PUT YOUR STUFF IN D
J Q=64512:R=Q+1
4 FOR I=1 TO 2~~:WA IT Q,2
5 POKE R,D(I)
6 PRINT D(I):REM TO SLOW THINGS DOWN
7 NEX T

The resulting tape can be used with the first program we gave in
this section. Without line 6 it runs at full speed and can be
read by the second program in this section. Finally, this faster
way to read and wri t e tape will probably need to use the "leader"
method that we used on th e previous program.

AUTOLOAD TAPE
Machine language tapes fromOSI use the autoload format . Each

byte to be sent is broken down into the two ASCII characters that
represent it in hexadecimal notation. For example if %1111~~11
i s the form stored, it is sent as 2 bytes F and J, in ASCII as
$46 and $JJ . Thus 1 byte in memory is recorded as J bytes on tape.
This method is designed to use the monitor for tape in a way that
mimics the keyboard, and allows the tape itself to switch to the
keyboard mode, at the end of the loading process, so that an auto
s t art feature is possible.

The characters to be found on the tape are the 16 hexadecimal
digits~ to F, and

. $2E
(RETURN) ~D

I 2F
G 47

which are f a mil iar to you by your use of the monitor.

The tape format also includes the starting address of the code
to be taped (or to be loaded) and the starting address of the code
to be execu t ed . This can be the program just loaded or some other

JJ

J4

program, or the warm start of BASIC (,0,0,0,0) or the monitor (FE¢,0).
The G for "go" is optional. Representing the 2 bytes by H and L
(for high nybble and low nybble) and (RETURN) by R, the whole tape
format is as follows:

.HL HL / HLR HLR HLR ... HLR.HL HL G

The left HL HL is the starting address, MSB (most significant byte)
byte first. The right most HL HL is the address at which the monitor
will start execution, if G is found on the tape (or entered from the
keyboard). This format is exactly the same that you would use from
the keyboard to enter and run a program.

The monitor in the OSI machines can read tape in the above
format, but cannot write tapes. To write such tapes, use a program
like the one below, which assumes your machine language code is
in memory from $0222 to 02FF.

1 REM WRITE MACHINE LANGUAGE TAPES IN OSI FORMAT
L REM
3 REM
4 REM
S REM

E. H. CARLSON
3872 RALEIGH DR.
OKEMOS MI 48864
COMPUTE Issue 3, March/April 1980, p.115

~ N=221:M=3•N+15
1 Q=64512:R=O+l
8 REM ACIA AT 64512=SFCOO IN 500 BOARD MACHINES
9 REM USE 61440=SF000 FOR 600 BOARD MACHINES
10 INPUT ·sTART TAPE AND WAIT FOR LEADER , THEN INPUT G ";A$
100 DATA 46,48,50 ,50,50, 47:REM .0222/
105 DATA 46,70~69,48,48 ,7 1 : REM . FE00G
110 FOR 1=1 TO 6:READ C:WAI T 0,2 : POKE R,C:PRINT CHRS £C l ;:NEX1
116 S•546:E=S+N ~

119 REM FOR 1=50222 TO S02FF
· ' ' 120 FOR I=S TOE

125 C=PEEK<Il:H=C AND 240:L=C AND 15
130 H=H/16+48:IF H>57 THEN H=H+7
135 L=L+48:IF L)57 THEN L=L+7
136 WAIT O,Z:POKE R,H
137 WAIT O,Z:POKE R,L
138 WAIT 0,2:POKE R,13
145 PRINT CHRS(Hl;CHRS(Ll;" ";
150 NEXT I
155 FOR 1=1 TO 6:READ C:WAIT O,Z:POKE R,C : PRINl CHR$(C);:NEX1
160 REM FORMAT FOR TAPES IS:
165 REM .HLHL/HLRHLR ... HLR.HLHLG
1'?0 REM WHERE THE HLHL AT THE START IS THE STARTING ADDRESS,
175 REM HI BYTE FIRST, THE HLHL AT THE END IS THE EXECUTE
180 REM ADDRESS AND THE HLR'S IN THE MIDDLE ARE THE TEXT
185 REM BYTES, THE R BEING A CARRIAGE RETURN
190 REM THE . / G ARE THE SAME AS THE COMMANDS IN THE MONITOR
200 REM THE H AND THE L ARL ASCII CODE FOR THE HEX DIGllS
~05 REM 0 THROUGH F.

l GC! 0 b2ubt~ : Rt.\'1 *** H!'<.i'-'1 lCH L:JU·i I c t.:· ***
l(Jl! !<EYl

J U£: PE.t'l
H<-3 t:;;Ef'i

*** I~Sr PROGRHM **•
110 GOl 0 '-"0 12.1
l:C:0 GOSUB 5 10
lL2
12 4
126
lL8
130
1 ·?
.l. _)£_

Utl
ON
IF
lF
IF
IF

f-l GOTO
A GOSUB
A THEl'-1
A GOTO
A THEN
A THEJi

c- .. ~' '~~30 ._1~

5 40,!::.50
580
5?'3

GOSU!:l 580

B=l
1.::::3 RET·l LOCATOR FINDS "THEN " BUT PRINTS NO fiDDRESS
134 I F A lHEN GOlO 580
.1.36 REf"'l GOTO 0

138 RU1 G!JSUB 0
14~ REM IF A THEN GOTO 0

142 IF A THEN GOSUB 600:GUSUB 610:GOTO 620
889 STOP
~~00 RETURN:MY MACH INE HAS A BELL PROGRAM HERE
b~~000 REM
b200 1 REM *** . BRANCH LOCATOR***
bL002 REM
62010 PRINT :PRINT:PRINT "BRANCHES:":PRINT:PRINT
6~020 A=7 72:L=0:FOR I=1 TO 9999 :REM START HERE FOR NEW LINE
b2035 L=PEEK<A-1)+PEEK(A)*256:PRINT CHR$(13) L;
62036 IF L>9989 THEN GOSUB 9700:END
S2040 FOR J=1 TO 9889:A=A+1:B=PEEK(A):REM NEW STATEMENT
b2050 IF B= l36 OR B=138 OR B=140 OR 8 =144 THEN 62100
62055 FOR K=1 TO 255:REM LOOK FOR STATEMENT OR LINE END
62060 A=A+l:B=PEEKlA):IF B=0 THEN A=A+4:PL=0:NEXT I
b2065 IF B=58 THEN PL=l:NEXl J
b2070 NEXT K:STOP
62100 FOR K=1 TO 73:B=PEEKlA)
b2110 IF B=136 THEN DS = "GOTO
82120 IF B=l40 THEN DS= "GOSUB
62130 IF B=160 THEN D$= "THEN
62141 A=A+1:NEXT K:STOP

»:GOTO 62143
": GOTO 62143
»:TH=- 1:GOTO 62143

b2143 IF PL=l THEN PL=0:PRINT CHRS(l.3) L;
62144 PRINT TAB(7);D$;
b2145 A=A+1:B=PEEKCAl:IF B=32 THEN PRINT ••;:GOTO 62145 ~··

b214? IF TH THEN 62200:REM LOOK FOR COMPLICATED "THEN• LINES· ·. '
.,

62150 IF B=44 OR CB>46 AND B<58) THEN PRINT CHRS(Bl;:GOTO 62145
S2152 PRINT ••
62155 IF B=0 THEN A=A+4:PL=0:NEXT I
62160 IF B=58 THEN PL=1 :NEXT J
b2165 GOTO 62~55
62200 TH=0: I F B=l36 OR B=138 OR B=140 THEN 62110 ·
b2210 GOTO 62 150

OK

f. '.

, I : :· :•

'· : ; , ;'

. .. :-,·.

35

J6

1 A=1:REM *** l'EST PROGRAM **•
2 REM "RUN 62000" T 0 COI'iPfiC : n --:L i LS ; ~-C:-<::J (_, , ,_f ;!- !

3: ::C=3:D=4:REM AAAAA
4 END:DON'T SEE THIS AF1E~ CUM~HCTl UN
5 RETURN:NOR THIS
6 GOTO 111ll:NOR THIS
7 A$="SEE THIS":REM NOT THIS
999 STOP
62000 REt·1
62001 RErTl
62002 REM

*** COMPACTOR ***
62010 PRINT:PRINT:PRINT "COMPACllNG":PRINT:PRIN~
62015 DIM LC80l:AP=769:AD=3•2S6-3
62020 A=768:L=0:FOR 1=1 TO 99S8:A=A+4
62025 IF L<>0 THEN GOSUB 62600
62035 L=PEEK<A-1)+PEEK(AJ*256:AN=0
62036 IF L>9999 THEN POKE AP,0:POKE AP+1,0:END
62040 A=A+l:B=PEEK(A):IF (B=32)0R<B=58J THEN 62040
62050 A=A-l:FOR K=1 TO 255:A=A+l:B=PEEKCA)
62060 IF B=0 THEN NEXT I
62065 IF B=142 THEN GOTO 62100
62068 IF CB=128l0R(B=143)0R(B=l41) THEN LCHNl=B:RN=AN+l:GOTO G2 100
62070 IF 8=58 THEN GOTO 62400
62073 IF B<>32 THEN L(AN>=B:AN=AN+l
62075 IF B=136 THEN GOTO 62200
62080 IF 8=34 THEN GOTO 62300
62090 NEXT K:STOP
62100 FOR K=1 TO 255:A=A+1:B=PEEK(A):REM LOOKING FOR LINE END
62110 IF B=0 THEN NEXT I
62120 NEXT K
62200 FOR K=1 TO 255:A=A+1:B=PEEK<Al:REM FOUND · GOTO "
62210 IF B=0 THEN NEXT I
62215 ~F B=32 THEN A=A+l:B=PEEK<Al:GOT062210
62220 IF B=58 THSN GOTO 62100
62225 L<AN)=B:AN=AN+l:NEXT K
62300 FOR K=1 TO 255:A=A+l:B=PEEK<Al:REM FOUND " CHAR .
62320 IF B=34 THEN L<ANl=B:AN=AN+l:GOTO 62090
62325 IF B=0 THEN NEXT I
62327 IF B=58 THEN 62400
62330 U AN l=B: AN=AN+ 1: NEXT K
62400 A=A+1:B=PEEK(A):lF tB=3210R(B=58) THEN 62400:REM FOUND
.62410 IF B=0 THEN NEXT I
62420 IF B=l42 THEN GOTO 62100
62430 U AN)=58 : U AN+l)=B: AN=AN+2: GOT062120
62600 PRINT L;: REM POKE MEMORY l.JITH COMPACTED LINE
o2601 AH=INT((A-3)/256):AL=(A-3)-256*AH
62602 POKE AP,AL:POKE AP+1,AH:PRINT TAB(8) AL;AH;
62604 IF AN=0 THEN PRINT:RETURN
62605 AH=INT<AP/Z561:AL=AP-256*AH
62607 PRINT TAB(16l AL;AH;
62608 POKE AD,AL:POKE AD+l,AH:AD=AP:AP=AP+2
62610 AH=INT(L/Z56):AL=L-256*AH
62611 POKE AP,AL:AP=AP+l:POKE AP,AH:AP=AP+l
62616 FOR I=0 TO AN - 1:POKE AP,LCll : PRINT CHRSCL(l)); : AP=AP+l: NEXT i
62620 POKE AP,0:AP=RP+1:PRINT:RETURN

~

,.,....... -

HOOKS INTO BASIC and BASIC TRACE

After you have been using your machine for a while, a case of
" wha tifcitis" sets in. To overcome some of the minor annoyances or to
make some major ex tensions to BASIC , you must seek out the spots where
BASIC protrudes from its fortres s in the ROM's. There are several
s uch places.

Of course, USR(X) is designed to be an exit from BASIC. But

J?

there a re others that l ead even deeper into the fortress. BASIC
passes throug h the JMP in $0000 on its way to warm start at $A2?4.
Change the address in $01 ,02 and you can make "warm start" into anything
you wish! For exampl e , write y our own s c reen editor with true backspace
and middle - of-the- line editing. Or buy one in firmware or software
offered by the sof tware houses. Other jump pointers in zero page are
the message printer at $04, INVAR a t $06, and OUTVAR at $08. Super
boards and C1 machines have a very useful se t of hooks in page $02
for INPUT, OUTPUT, (CTRL/C), and LOAD FLAG.

There is one gigantic crack that extends to the very center of
fortress BASIC. The routine stored in page zero from $BC to $DJ
ge ts characters from the BASIC s ource code lines and sends them on
to be processed by the rest of the interpreter. Every character of
every line of BASIC source code g oes through this routine! I wrote
an ar ticle "PUT YOUR HOOKS INTO OSI BASIC" about it (MICRO, June 1980,
page 15). Dale Mayers has written a BASIC TRACE program by modifying
the page $00 routine a nd adding code in page $02. A version of this
program is g i v en below.

H1
12
15
16
17
:i0
100
105
106
107
110
120
130
140
150
1b0
1~10

180
L00
210
L20
L25
L26
L30
3110
3 10
::!15
3L0
325

REM *** BHSlC TRACE ***
REM

REM by Dale Mayers
REM 2301 S. Washington
REM Lansing MI
RD1

FORX=546T0642:READD:POKEX,D:NEXT
FORX= 218 TO 238 :READD:POKEX,D:NEXT
REM CODE STARTING AT $0222
DATA132,247 ,134,248,162,0,181,172

For C1 and Superboard II
line 140 change 128 to 163
line 160 change 215 to 208
This changes the address
on the screen.

DATA149, 240,232,224 , 5, 208,247, 165, 136, 166, 135, .133
DATA173,134,174,134,239,162,144,56,32,232,183.~2

DATA110, 185, 162, 0, 189, 0, 1, 201, 0, 20.8, 2, 240 . . . ,
DATA27,157 , l~S, 215,232,224,6,208,239,32,0,453 "
DATA162, 0, 181,240,149,172, 232,22.4·, S ;y2B8,247· ~ l-:64 ·.
DATA247, 166,248,96, 169,32,157, 128,~01 5. ,?3~, 22:4 -; 6 1'>. · :. , ·
DATA208, 248,240,225,162,176,134, 206,162; J.a~·£3lt,.~·l· : ,, ~
DATAS6, 32,2 , 2, 2 , . .· . . · ... : : .. ,. / _.. ·.·~.; ·.J ::.

REM CODE STARTING AT S00DA · . ,<
DATA133, 238, 165, 135, 197 ' 239,240 , 3, 3Z, 34~ 2~i~ ::·· ; <· ' ;) : .. :: •.. ·
DATA238, 5 6, 233, 48, 56,233,208, 96 ,32,~-~.,Zf;;;::}-.:y .. ~~~l~ff~· ·1: ;
REM LOADS CODE . SB0, SA0. INTO ADDRESSES:. :~4~:''~F
REM USING A SUBROUTINE lHAT . STARTS AT S021S)iv, · .·.:i/>~,,:') :
POKE11,118:POKE12,2:X=USR(XJ • . : :. · . ·i,ff{, ;;:t ,,j;~··.•,,. ,),:.~ ~;p
REM RUN THIS PROGRAM. THEN •NEWM. ~f;l. ·l:OAt) .. ~yqJ)~;i;;~~~
REM THE CURRENT LINE fi4MBER WILL AP~~:ftti:i ifjiiP~ ,.{(..' :J .

. '- •... , ·: . . ,'\ '~ ~Jf · ' '· ' .; I' :/ ,;"· .': .'·

REM BOTTOM OF THE SCREEN AS YOUR : PRO~~M~.:J{~\1fii:~igl .f;/r.'1"o,1

REM YOUR PROGRAM WILL R~li WHILE THE. . SPfl~~~i~};t§~/i:(~ :· :,:~
REM HELD DOWN, STOP WHEN THE SPACE . aflR'/'tS ;, se·\t,~Siif£[;>:,~,;1

38
KEYBOARD AND SCREEN TRICKS

Good programs have optimum human-machine interfacing. Whether
you run a word processing, game, or business program, you quickly
become fatigued and annoyed if the keyboard requires unnec essary
pounding or the TV screen displays inappropriate stuff.

The PRINT and INPUT commands of BASIC, wh ile easy to use,
promote idiotic repetitive and mechanical conversation. Humans
feel most at home if the computer mimics human conversation patterns ..
For example, instructions at the start, menus, HELP if needed,
complete prompts for early use, and minimal prompts when famil i arity
with the software system has been reached. All this takes some
extra effort by the programmer. Rather than pontificate on the
principles of good human-machine interfacing, I will just point
out some keyboard and screen techniques that are useful. Wi th
them, you can obtain clean input and output if you give some thought
to the process and turn your annoyance detectors up high as you
try out your programs during their development.

Scroll free displays. The most primitive displays use a
succession of PRINT statements so that old material is scrolled upward.
Information entered does not stay where you put it, requiring you
to search upward on a cluttered screen to find the nuggets you
need. Perhaps the worst cases of " s crollitis" occur in those board
games where the whole board is rePRINTed after every move. The
resulting scrolling is visually equivalent to the nerve jarring
racket of a stick rattling along a picket fence. The best way is to
create the board and subsequently update it with POKEs. Scores
and other text can be POKEd in with the "print at" subroutine given
in the section on FORMAT and UTILITIES.

We have this scroll free gem from the Aardvark Journal:

120 PRINT CHR$(13)"message";

The CHR$(13) and the semicolon at the end are the essential
elements of the trick. The message is printed at the usual
entry spot at the bottom of the screen. But the semicolon insures
that no scroll follows the message , and the CHR$(13) sends a CR
before the message so it starts at the left of the screen rather
than at the end of the previous screen output.

Invisible tagging of spaces. In programs, the screen display
itself can be data, deposited in screen memory by POKEs and retrieved
by PEEKs. There are 2 distinct characters, $20 and $90, that are
displayed as a "blank" on the screen. This fact allows some
unusual effects to be programmed. For example, in a "fox and
rabbit" game, the field may consist of type $20 blanks (plus trees,
houses, fences , rabbit, fox, etc.) and as the rabbit moves, he may
lay down a trail of type $90 blanks, invisible on the screen but
followed by the fox, sniffing with PEEKs and using IF ... to recognize
the $90 scent.

Keyboard input. There are three ways to ge t input from the
keyboard, or rather, one hardware way that can be used directly
or accessed through 1 or 2 levels of software.

The hardware method uses the keyboard port at 57088. This
me thod differs depending on whether you have a C1 or a C2 (C4P)
machine. At any rate, it is described in the OSI literature.
The only point I will make here is that the AND, OR, NOT functions
are very useful to detect if one key is depressed when others may
or may not also be depressed.

1 REM FOR A C2-4P
100 KB=57088
110 POKE 530,1:REM DISABLE (CTRL/C)
115 S$='"'
120 POKE KB,4:REM 4=%00000100, activate s R2
130 P=PEEK(KB)
140 IF (P AND 16)=16 THEN S$=" B"
150 REM 16~%00010000, C4
160 PRINT P;S$
199 GOTO 115
200 REM Detects a B key depression, even if

other row R2 keys (XCVBNM,) are
depressed also.

On a C2 machine, the row and columns are designated
being equal to 1. On a C1 machine, by bits being zero.

C2: R2=%00000100
C1: R2=%11111011

by bits
For example:

So the NOT operator can be used to translate from variables suitable
for a C2 machine to those for a C1. Software can be written that
works on either machine . Wri t e the program for one (say a C2-4P)
and have the program look at the byte in $FFE2 to see if the

39

machine being used is a C1. If so, do a NOT on the keyboard variables.

The next level of use of the keyboard from BASIC has USR(X) call
the keyboard routine at $FDOO directly. This routine goes into a
loop waiting for a key closure . Upon getting one, it stores the
character at address 531 and returns to BASIC.

From the 1%% POKE 11,%;POKE 12,253
Aardvark Journal: 11% X=USR(X)

12,0 P=PEEK(531)
13~ PRINT CHR$(P);
14% REM Or use P to make a string, etc.
199 GOTO 110

There are advantages to this input over using the INPUT command in
the handling of commas and quotation marks.

40

INPUT: some problems a nd partial solutions. If you a re
entering a string, the computer usually interpre ts commas as
marking the end of the string . Thi s is unaccep t able in ma ny application"
for exampl e, in wo rd processing programs. Exampl e: '

1,0 INPUT S$
2,0 PRINT S$
RUN
? HERE , WE HAVE A COMMA.
?EXTRA IGNORED
HERE

A fix is to start the inputed string with a quotation mark.
Same program:

RUN
? "HERE, WE HAVE A COMMA.
HERE, WE HAVE A COMMA.

However, there is a price. The program now will take a second quote
as sufficient cause to be confused. Note the same program with
two more input sentences:

but

but

RUN
? THIS IS A " MARK.
THIS IS A " MARK.

RUN
? "WE WANT BOTH A, AND A " IN THE SAME LINE.
RED O FROM START

RUN
? THIS IS A " AND THIS IS ANOTHER " .
THIS IS A " AND THIS IS ANOTHER "

RUN
'? THIS I S A " AND' THIS IS ANOTHER II

EXTRA IGONRED
THIS IS A " AND

All this makes strings a very poor way to do word processing.
More accurately, a poor way to input text. Once a string is
properly given a quo t a tion mark, it treats it right from then on .
Example :

1,0 Q$=CHR$(J4)
2,0 S$=" YOU CAN HAVE , AND " +Q$+"MARKS IN THE"
JJ::1 PRINT S$
RUN
YOU CAN HAVE , AND "MARKS IN THE

TWO ''S COIVlPLEMENT BINARY NUMBERS

To represent signed numbers, the left most bit is reserved to
be a sign bit (~for+ and 1 for-). Then the best way to represent
negative numbers is in the two's complement form. Example:

4 %0000000000000100
J 0000000000000011
2 0000000000000010
1 0000000000000001
0 0000000000000000

-1 1111111111111111
-2 1111111111111110
-J 1111111111111101
-4 1111111111111100

To get the negative of any number (+ or -) when in the two's
complement integer form, first invert each digit (every 1 goes to
0 and 0 to 1) . Then add 1 (with binary carry).

Example: J
-J

%0000000000000011
1111111111111100+1=
1111111111111101

-4 1111111111111100
4 0000000000000011+1=

0000000000000100

FLOATING POINT NUMBERS

Single numerical variables require 6 bytes of table space,
2 for the name and 4 for the value. Numbers are stored in a
floating point binary representation. The first byte gives the
exponent. The next J bytes give the mantissa (fraction) and
sign. For exampl e the number J is represented as

J = %0011 in one binary nybble.

(The% preceding a number indicates it is in binary , $ indicates
it is in hexadecimal .) You can add as many binary zeros as you
wish to the left (just as in decimal numbers).

J = %0000 0011 in one byte

Make it a fraction by moving the "radix point":

J = %0.11 X 2+2 in analogy with

J = 0. J X 10+1

So the internal representation of J could look like this;

J = $02 %1100 0000 $00 00 but doesn't, quite .
r ... __,
exponent J byte mantissa

41

42

We have neglected two details . We wa nt to be a bl e to expr ess bo t h
positive and negative exponents, so the byte repres ent i ng the
exponent is biased by adding $80 to it. The exp onent +2 i s repres ente d -
by $82, zero by $80 and - 2 by $7E.

Also, we want to represent the sign of the number, +J a nd not
- J. We make use of the fact that the mantissa is c ho s en s uc h t hat
its left most digit is always 1. So this digit i s r e dunda nt and
we remove it and replace it with a sign digit, 0 for + and 1 for
Th e final result is:

J = %11
is stored as J = $82 %0100 0000 $00 00 = $82 4 0 00 00
while - J = $82 %1100 0000 $00 00 = $82 co 00 00
and 1/J = $7F %001 0 1010 1 010 1010 101 0 1 011
and - 1/J = $7F %1010 1010 1010 1010 1010 1 011

finally: 0 = $00 00 00 00 as a convention

The largest integer that can be repres ent ed by thi s system
wi th no error i s

stored as

shown as

2 24 - 1 = 2563-1 = 16,772,215

= %1111 1111 1111 1111 1111 1111

$98 7F FF FF in th e tabl e.

1 .6772E+07 on th e screen.

F inally, what ha ppens if you try to store an undefined value?
Th e 2 l i ne program

1 A= B
2 PRINT A; B
RUN

~ 0 0
run ok . Th e variable B, of course, is undefined in this program
a nd has no entry in the variable t able. A is represented by

A = $00 00 AS 7D in the t a bl e.

Thi s number i s treated as being zero by the BASIC interpreter.

In fact, a ny floating point number whos e exponent is $00 is

treated as zero. If the sign bit in the mantissa is set, t he number

is treated an -~.

43

TOKENS

- 80 128 END A3 163 +
81 129 FOR A4 164 -
82 130 NEXT A5 165 *
83 131 DATA A6 166 I
84 132 INPUT A7 167 (power)_

85 133 DIM AS 168 AND
86 134 READ A9 169 OR

87 135 LET AA 170 >
88 136 GOTO AB 171 =
89 137 RUN AC 172 <
BA 138 IF AD 173 SGN
8B 139 RESTORE AE 174 INT ..
sc 140 GOSUB AF 175 ABS
8D 141 RETURN BO 176 USR
BE 142 REM B1 177 FRE
BF 143 STOP B2 178 POS
90 144 ON B3 179 SQR

91 145 NULL B4 180 RND
92 146 WA IT B5 181 LOG

93 147 LOAD B6 182 EXP
94 148 SA VE B7 183 cos
95 149 DEF BB 184 SIN
96 150 POKE B9 185 TAN

97 151 PRINT BA 186 ATN
98 152 CONT BB 187 PEEK

99 153 LIST BC 188 LEN
9A 154 CLEAR BD 189 STR$
9B 155 NEW BE 190 VAL
9C 156 TAB(BF 191 ASC

9D 157 TO co 192 CHR$
9E 158 FN C1 193 LEFT$

9F 159 SPC(C2 194 RIGHT$
AO 160 THEN C3 195 MID$
A1 161 NOT
A2 162 STEP

44

SOURCE CODE AND VARIABLE TABLES

The source code memory is rearranged as each line is

entered so as to keep the lines in numerical order. Adding

or deleting a line from source code "destroys" the variable
table. (Pieces or all of it may be found by looking in
memory with the monitor or PEEK .) We illustrate storage
by some very simple programs:

1 A=3
RUN

$%3%% ~1 :¢3

%%1
41
AB

~3

~}
41 }
%%

start of source program

address of next line

line number

A
token for =
3 in ASCI I
line end symbol

when address of next line is zero, source

variable table starts. First 2 bytes are
ends.
name

il
Next 4 bytes are value 3 in floating point.

empty •..
1 A$=" B"
RUN ~

~
:¢3

%%
41
24
AB
22
42
22

~}
41
80
%1 .¢9)
%~

Start of source program

A
$ token
= token
" token
B in ASCII
" token
line end
program end (2 bytes)

A
$
length of string
address of first byte of string (2 bytes)

A.

10 DEF FNAB(A)=A-::- 2
RUN

$,03,0,0 ¢¢} 12
%3

~%}
95 DEF
2,0 space
9E FN
41 A
42 B
28 (
41 A
29)
AB =

,03,0E 41 A
A5 ~-

32 2

,0312 ~)

$,0314 C1} FNAB 42

{%3} address of definition of FNAB

1¢~1 address of value of argument

L411 A

~ 4 byte value of A

~
empty •..

In the above example, if we add the line

20 Z=2:? FNAB(Z+3)

a fter RUNning the address value of the argument would

still be that of the value of A, even though the execution
of .FNAB calcula ted the argument as the value of Z+3=5,and
A lS unchanged.

When strings are concatenated, they are stored at the end
of memory. For a 16K machine the last byte is $3FFF.
When the following program is run, its variable table
looks like this:

1 A$=" B"
2 A$=A$+A$
RUN

$,031B 41

8,0

,02 string is 2 bytes long

FE its first byte is at $3F FE .
3F
empty

$3FFE 42

42

45

46

ARRAY STORAGE

We illustrate the storage of array variables by showing
the variable table for this program:

1 0 D IM A (1 , 2)

20 FOR I=,0 TO 1

JO FOR J=,0 TO 2
40 A(I,J)=10*I+J

50 NEXT

RUN

The Variable table s t arts at $,0]48:

$,0]48 49 I
,0,0
82 2

~
4AJ
,0,0
82 J

~
41 A
,0,0

$21=JJ=6x4+9=
,0,0 size of

table

,0'2 2 indices

,01,T has J
¢"3 values

~ I has 2

,0% =0
%% A(O,O)

%%
84 =10
~ A(1 ,0)

%%
81 =1
%% A(0,1)

%%
84 =11
~ A(1 ,1)

%%
82 =2
%% A(0,2)

%%
84 =12
~ A(1,2)

%%
empty •..

Unlike a speedometer, the f astest changing digit is the

one on the left. Note also that table size has its most
significant digit last but the index size has it first!

47

THE STAC K

Each time t he interpreter encounters a FOR ... statement, it pushes
some stuff on th e stack. The depth of all kinds of nesting combined,
(...)sets, FOR ... NEXT loops, or subroutines, is limited by the
stack length available. Consider this short program:

1~ FORA=1T02STEP3
2)6 END

program

OJOO 00

gn address of next line

stack

o1FFl

overhead

OA~
00
81
41

firs t AB
line J1

9D
J2
A2
JJ
00

1~)
second OJ

line 11+}
00
80
00

00}
variable 00

41 table
00
80
00
00
00

l . b lne num er

FOR
A
=
1
TO
2
S TEP
J

n ex t address

line number

END

program end

A

1
1

'
I'

..1

\.

\...

01FO J
01EF

(

r-\
81
18
OJ
82
co
00
00
01
82
00
00
00
OA
00
OJ
OD

{
{
r~

FOR, token

address of loop
var. value

-STEP

exit value

line number of FOR

address of following
line

The entry on the stack for subroutines is demonstrated by this
little program :

program

OJO O 00
08)

5 GOSUB7
6 REM
?END

stack

OJ] 8C
051. ___ ~ {05
oo J -------------- oo
8C GOSUB f06

OJ06 J7 7 \ OJ
00 FB

AS

GOSUB token

line number

address of target
line name

48

We see that FOR pushes 16 bytes on the stack and GOS UB pus hes
7 bytes. VIii thin <OJ llne " (" pushes 5 bytes and express i ons with i n
the parentheses may push additional bytes on the sta ck.

Now we consid er the two commands (FOR, GOSUB) that push stuf f on
the stack, and th e t hr ee (NEX'r, RETURN, FOR) that sear ch the stack .

GOSUB: Pushes 7 byt e s on the stack, does no s ea r ch of t he stack .

(a) 1,0 GOSU B J%
2,0 N=N+1: PRINT N
J% GOTO 1,0

You ge t OM ERROR after N=26 because of stack overflow.

RETURN: Searches the stack fo r the last GOSUB pushed o . C ~ ears
the stack of all entries made after that GOSUB. Thus a1 -.- FOR
loops started in the subroutine but not finished t here (~o~
exited by a NEXT) are removed from the stack. This pre-.-er.ts
unfinished business in the subroutine from slopping over ir.LO
the calling program.

(b) 1,0 GOSUB 5,0
2,0 NEXT I
J% END
5J:' FOR I =1 TO J
6,0 RETURN

NF ERROR IN 2,0. No record exists at line 20 that the FOR I = ...
l oop was previously entered.

NEXT: Searches the stack for th e las t FOR stuff pushed on.
Stops searching when it encounters GOSUB stuff.

(c) 1,0 FOR I=1 TO J
2¢ GOSUB 5,0
5,0 NEXT

NF ERROR IN 5,0. The NEXT s earch terminated at the GOSU B stuff and
thus didn't detect the FOR stuff beyond it.

NEXT I: Searches until it finds a FOR I = ... entry on the s tack.
On the way it removes any FOR entri es with other variable names.
The search terminates if a GOSUB entry is found.

(d) 1,0 FOR I=1 TO J
2,0 FOR A=1 TO J
J% NEXT I
4,0 NEXT A

NF ERROR IN 4,0. The information about the FOR A= ... has been
wiped from the stack by the time line 40 is reached.

FOR: Searches the stack for al l previous FOR entries that ha v e t he
s a me loop variable na me. It picks the oldest entry and purges
the stack back to that point . If a GOSUB is detected during t he
search, the search is t ermina t ed .

..

(e) 1,0 FOR I=1
2,0 FOR A=1
3,0 FOR I=1
4,0 NEX T I
5,0 NEX T A
6,0 NEX T I

TO 3
TO 3
TO 3

(f) 1,0 FOR I=1 TO 3
2,0 GO TO 1,0

loops forever

NF ERROR IN 5,0. Line 3,0 purged the stack back to the FOR stuff
put on in line 1,0. This purging of extra entries with the same
variable name permits jumping out of a loop and then re-entering
it without a stack overflow. See program (f)

Again, the search terminates at a GOSUB to isolate the main
program from the shenanigans in the subroutine. But this isolation
cannot be complete because the stack is not the only thing altered
by the FOR statement. Th e loop variable entry in the variable table
is also initialized. The new value persists even after return from
the subroutine .

(g) 1,0 FOR I=1 TO 3
2,0 GOSUB 5,0
3,0 PRINT I :NEXT I
4,0 END
5,0 FOR I=? TO 9
6,0 RETURN

Runs to a normal END at line 40. But it only " loops " once, printing
the number" ?". The moral? Either use different loop variable
names in the subroutine, or make a normal exit through NEXT in the

_, subroutine ' s loop.

Some other instructive programs:

(h) 1,0 FOR I =1 TO 3
2,0 FOR A=1 TO 3
3,0 N=N+1:PRINT N;I;A
4,0 GOTO 1,0
loops forever

(i) 1,0 FOR I=1 TO 3
2,0 N=N+1:PRINT N;I
3,0 GOSUB 1,0

OM ERROR after N=8

49

50

OS I NE\rJSLE'rERS

PEEK (65)
P.O.Box 347
Owings Mills lVID 21117

OSIO Newsletter
David Morganstein
133 29 Woodruff Pl .
Germantovm lVID 20767

Th e Aardvark Journal
1690 Bolton
Walled Lake MI 48088

$1 2 .00 for 1 2 1ssues

Me mbershi p $15 . 00/year
Program exchange , d is c oun ts
on OSI and oth e r equipme n t .

$9 .00 for 6 issues

O.S.I. Users Independent Newsletter $10.00 for 6 1ssues
Charles Curley
6061 Lime Ave. ::" 2
Long Beach CA 90805

OSI's Small Systems Journal
Defunct. Compl e t e set from
PEEK(65) for $10.00. Contained
many programs tha t (modifi e d)
are still useful.

Later, OSI publi shed a seCLlOn
by that name i n kilobaud
MICROC OMPUTING. P r ese· t :::_ y
is a section in MI C 0 .

MICRO

6502 PUBLICATIONS

$2 . 00/issue
34 Chelmsford S tre e t
Che lmsford, MA 01820

C OMPUTE~
Circulation Dept.
P . O.Box 5406
Greensboro, NC 27403

1 REM *'*'* RANDOI1 NUI1BER GE!iERA fOR ***
£. RE.M
1~0 REM *'*'* DRIVER **'*
Hll REM
105 GOSUB 9850:REM I NITIALIZE
110 FOR I=l TO 100
120 GOSUB 9800:REM USE
130 PRINT R7:REM R7 IS THE RANDOM NUMBER
140 NEXT

"Best of MICRO" also available

$2.00/issue, $16. 00/year

150 REM THE PERIOD OF THIS GENERATOR IS ABOU T 14000
899 STOP
9800 REM
8801 REI1

*'** RANDOM NUMBER GENERATOR ***

9810 F7 =F7*15-Z33•INT<F7•15/233)
9815 G7 =G7•15-Z51*1Nl<G7•1S/251)
~820 R7=(F7S25l+G7) / (233*251J:RETUkN
8850 REI1 ENTER HLRE T 0 HH T HlL 1 Zt.:
~855 F7=113:G7=71:RETURN

51

OSI SOFTWARE HOUSES

Aardvark Technical Services
1690 Bolton

i -alled Lake, MI 48808

Aurora Software Associates
P.O. Box 99553
Cleveland OH 44199

Progressive Computing
3336 Avondale Court
Windsor, Ont. CANADA N9E 1X6

or
3281 Countryside Circle
Pontiac TWP, IVII 48057

Mittendorf Engineer ing
905 Villa Nueva Dr.
Litchfield Park, AZ 85340

DBIS
One Mayfair Road
Eastchester NY 10707

D BIVIS , Inc .
P. O. Box 347
Owings Mills MD 21117

Bill's Micro Services
210 S. Kenilworth
Oak Park IL 60302

Software Federation Inc .
44 University Drive
Arlington Heights IL 60004

Orion Software Associates
147 Main Stree t
Ossining NY 10562

Prism Software
Box 928
College Park MD 20740

Retelle
2005 Whittaker Rd.
Ypsilanti MI 48197

Mile High Software Co.
31 8 Linden Ave.
Boulder CO 80302

Earths hip
Box 489
Sus sex NJ

Games, utilities, data sheets,
firmware, hardware mods.

Games, utilities, business

Games, utilities, data sheets,
firmware, hardware mods.

Software, data sheets, hardware

Business

Manuals, business software

OS I 1P programs

Business

Games

•
Disk copy utility

Games

Games

Games

52

BAP$ S oftware
6221 Richmond Ave ., Suite 220
Houston TX 77057

Percep ti ons Unlimited
Box 3-1 86 ECB
Anchorage AK 99501

Dwo Quang Fok Lok S ow
and

Structured Program Designers
371 Broome St.
NYC NY 10013

Digital Techno l ogy, Inc.
P.O.Box 178590
San Diego CA 9 2117

The 6502 Program Exchange
2920 \tJ . Moana
Reno NV 89509

Technical Products Co.
P. O.Box 12983
Gainsville FL 32604

Systek, Inc.
P.O. Drawer JJ
Miss. State, MS 39762

Honders Inc.
57 North Street
Middletown NY 10940

Aristo/Polks
314 5t'h Ave.
NYC NY 10001

Software Consultants
7053 Rode Trail
Memphis Tenn. 38134

D $ N Micro Products, Inc.
3932 Oakhurst Dr.
Fort Wayne IN 4 6815

Personal financial

Games

v1lord proc e ssor

Business

Business

General 6502 progr ams , ccr:
deliver in KC t ape ~or~£t

Disk FORTH, etc.

Engineering programs

Business

Games

OS - 65D V3.2 Manual

OSI compatible hardware, boards

MEMORY MAP

__ ,. C2-4P with 16 K of memory and a BASIC-IN-ROM Version 1. 0, Rev. J. 2.

Most of thes e entr ies are due to Bruce Hoyt and to Jim Butterfield.

00 4C 74 A2

OJ 4C CJ AS

06 05 AE

08 C1 AF

OA 4C 88

OD 00

0:8: 00

OF 48

10 38

11 00 40

13 t o SA
5B 22

sc 22

sn
5B
5F FF

60

61 00

62

63

64 00

AE

65 68 65 00

68 06 92 A1

6B

6E

71 92 A1

73 47 9B

75
77

JMP to warm start. $BD11 earlier, cold start

JMP to message printer. A ,Y contain lo,hi address

of start of message. Message ends with a null.

IN'~R, USR get argument routine address

OUT,~R. address of USR return value routine

JMP to USR(X) routine

number of nulls after Line Feed, set by NULL command.

Note! not the nulls a ft er CR.

line buffer pointer

terminal width . $48=72

input col. limit
integer address

line buffer

..

used by dec. to bin. routine, search character, etc.

scan-between-quotes flag

l ine buffer pointer, number of subscripts

default DIM flag

type: $FF=s tring, $OO=numeric

DATA scan flag, LIST quote flag, memory flag

subscript flag, FNx flag

$00=input, $98=read

c omparison evaluation flag

CNTL-0 flag. $80 means suppress output

t emporary string (descriptor stack) pointers

stack of descriptors for temporary strings

"
"

temporary variable pointer, also used by dec. to bin .
pointers, etc

product staging area for multiplication

"

53

54

79 01 OJ

7B OJ OJ

7D OJ OJ

7F OJ OJ

81 FF JF

8J
85 00 40

87 FF

89
8B

8D

00

8F 00 OJ

91

9J
95 12

97

99
9C
9F OJ

A1
A4

4C 00

A? FE 00

AA
AC to BO

AC 06 92
AE 68
AF 00

BO 20

B1
B2 00

address of start of sonrce program in RAM

sing l e variable t able

array variable table

emp ty BASIC memory

high string storage space

t emporary string pointer

address + 1 of end of BA S IC memory

current line number

line number at STOP, END or (CTRL/C) bre2k

program scan pointer, address of current :~ne

line number of present DATA statement

next address in DATA statements

address of next value after comma in prese- _ c;_ = -:____

s tatement

last variable name

last variable value address

address of current variable, pointer for FOR/ -~X"

work area; pointers, constant save, etc.

"

"

JMP, a general purpos e jump

misc. work area and storage

"
pointer to current program line

first floating point accumulator. E,M, M,M,S

AD and AE are printed in decimal by $B9 62
FACHI, byte transfered by USR(X)

FACLO, "

sign of Ace. /~ 1

series evalua tion constant pointer

accumulator #1 high order (overflow) word

second floating point accumulator. E,M,M,M,S BJ to B7

BJ 80 00

B8 92

00 10 00 E=exponent, M=mantissa byte

sign comparison, ace. # 1 vs. #2

B9 A1 ace. # 1 low order (rounding) word

BA 98 A1

BC to DJ

BC

BE

co
C2

C5
C?

C9
CB

CD

CE

DO

D1

E6 CJ
DO 02

E6 C4

AD 00 OJ

C9 JA
BO OA

C9 20
FO EF

J8
E9 JO

J8
E9 DO

I:J 60
Dl to D?

D4 80 4F

D6 C? 52
D8 to FF

FB
FC

FD

FE -- --

100 to 10C

130

1CO

1JJ to 1FF

series pointer
routine copied from $BCEE. It is th e start

of a subroutine to go through a line

character by character.

INC lo byte of address of character

BNE
INC hi byte if needed

LDA with a character of the line.

CMP #$JA is it a colon?
BCS branch is yes, statement done

CMP #$20 is it a space?

BEQ branch if yes, get another

SEC set carry
character

SBC #$J O
SEC

SBC #$~0

..

RTS end of subroutine, character in A

used by '1SI extended monitor as well as BASIC
r andom seed

"
unused by BASIC

monitor load flag

" data byte

"

" current address

ASC II numerals built in this space
NMI interrupt location

55

IRQ " " can be overwritten byBASIC
BASIC stack

56

200 to 20E

200
201

202

203
204

205
206

207 to 20E

207 B9 00 D7
20A 99 00 D7

20D C8

20E 60

20F to 211

212 00

213 OD 96 OD

217
218 to 221

218

21A
21C

21E

220

used to output to the screen and tap e

cursor location , initialized to contents of $FF~O
save character to be printed

temporary

LOAD flag, $80 means LOAD from tape

t elYJi) orary
SAVE flag, 0 means not SAVE mode
repeat rate f or CRT routine

part of scroll routine

LDA $D700,Y
STA $D700, Y

INY
RTS
unused
CNTL/C flag, not 0 means ignore CTRL/C

OD used by keyboard routine
r;>

used in 600 board machines as follows:

input vector

output vector

CNTL/C vector

LOAD vector
SAVE vector

See also Jim Butterfields list in COMPUTE., issue 2,
January/February 1980, page 41.

,.

BASIC MEMORY ROM

Thanks are due to many people who wrote me with entries, and

especially to Bruce Hoyt and to Jim Butterfield. See also Jim's

article in compute II., issue 2, June/July 1980 and the article

in PEEK(65), Vol. 1, No. 12, December 1980.

AOOO - AOJ7

AOJ8 - A065
A084 - A186

A1A1

A1CF

A212

A21F

A24E

A274

A295
A2A2

AJ2E

AJ57
AJ86

AJ99
AJA6

A4J2

A461

A47A

A477
A491

A4A7

A4B5

A556
A5FF

A61A

A629

A6J8

A6JA

A661

A67B

A691

Initial Work Jump Table

routine entry addresses

ERROR message table

search stack for most recent GOSUB or FOR

routine to open space in program for another line

check stack size

check free memory left

message output

warm start

tokenize and store in BASIC

delete a line from program

rebuild chaining of BASIC lines

input a line to input buffer

..

input a character, calls routine at FFEB

toggles the CTRL/0 flag

conver t keywords in input line

find program line number less than number in
$11-12, put address in $AA-AB

NEW routine

CLEAR

initialize

clear stack, reset addresses

initialize program scan pointer to beginning
of program.

LIST

FOR

execution routine

RESTORE

CNTL/C

STOP

END
CONT

NULL

RUN

57

c:, ,Q.
-'.

A69C

A6B9

A6E6

A 70C

A 71A

A 71F

A 7JC
A74F

A 75F

A 77F

A 7B9

A829

A866

A8CJ

ASEO

A8E5

A904

A9 2J
A946

A94F
AAlC

AA40

AA9B

AACl
ABAC

ABD8

ABF5

ACOO

ACOJ

ACOC

AC66

AC69

AC96
ADOl

ADOB

AD81

ADBB

ADE6

GOSUB

GOTO

R~ TURN

DATA

scan fo r next BA SIC statement

scan f or next BASIC line

IF

RE M

ON

decimal to binary, put answer 1n $::, :2
LET

PRINT

end of input line routine , puts OUL c~ a~a ~~ & null s

string output routine, address i n _.:,, Y (.:.. o, - -~)
end string with a null

output single character

output routine, calls $FFEE

handle bad input data

INPUT

prompt and receive input

READ

Message tabl e "EXTRA IGNORED, REDO FROM START"

NEXT

check data, print "TYPE MISMATCH"

expression handler
non-numeric expressi ons

NOT

check for

check for

check for

print "SN"

OR

AND

comparison

DIM

" ("

") "

" " '

s earch for variable location in memory

is character alphabetic?

create new variables

array pointer subroutine

ADF7

AE05 -- AE17

AF7C
AFAD

AFC1
AFCE

AFD4
AFDE

BOOB

B021
B08C
BOAE

B115
B147
B1D4

B218

B24D
B28A

B2B3
B2EB

B2FC

BJ10

BJJC
BJ47
BJ6F
BJ8C

B392
BJ9B
BJAB

BJBD

BJFC
B408

B41E

B429
B432
B44E

B455

evaluate integer expression

== command

create new arrays

compute array subscript size
FRE

fixed to floating
POS

check if "ILLEGAL DIRECT"
DEF

check FNx syntex

evaluate FNx

STR$
scan and set up string

build string vector
garbage collector

find string for collection
collect string

string concatenation
put string in memory

discard unwanted string
clear descriptor stack

CHR$
LEFT$

RIGHT$
MID$

pull string function paramerers from stack
LEN

go from string mode to numerical mode
ASC

input byte parameter
VAL

get 2 parameters for POKE and WAIT
floating number in accumulator converted to
fixed and put in $11,12
PEEK

POKE
WAIT

add 0.5 to ace . #1

- command

59

60

B46C

B5J7
B564

B569

B59C
B5BD

B5FE
B622

B64D

B67J
B690
B69E

B6B5
B6C 2

B6CD

B74B

B76B

B79B

B7F8
B7AB

B7BA
B7CA

B7F5
B8J1
B862

B887

B912

B947

B95J
B95E
B962
B96E

BA96
BAAC

BAB6

BAEF

BAFA

BB1B

+ command

complement ace. # 1
print "OV"

multiply a byte

function constant table
LOG
-r-- command

multiply a bit

load ace. #2 from memory
test and adjust ace. # 1 and #2

over and underflow
multiply by 10

10 in floating point binary

divide by

divide into, /
unpack memory into ace. # 1

store ace. # 1 in memory

ace . #2 to # 1

compare ace. #1 to memory

transfer ace. # 1 yo # 2

round off ace . #1

sign of ace. #1

ABS
floating to fixed

INT
string to floating point

get next ASCII digit

table of constants to build string of a number

output line number
hex in A,X ' converted to deximal and printed

output decimal value of number (binary) in $AC,AF
build ASCII number in $100-10C from number in
$AC-AF
table of constants for numeric conversions

SQR

A raise to a power

negation
table of constants for string evaluations

EXP

BB6E

BBB8

BBCO

BBFC

BCOJ
BC4C

BC78

BC99
BCEE

BD11

BEJ9
BF2D

series evaluation

table of constants for RND
RND

cos
SIN

TAN

table of constants for trig . functions
ATN

get character routine , moved to $BC

cold start

cold start messages

output character to TV screen , do scroll , etc.

This list may contain some errors , or at lea st some

omissions . The listed addresses are (sometimes approximately)

where the code for that func tion begins . In many cases it

is not the entry point . Often the code is not in the form of

a complete subroutine , rather it is entered and left by

jumps and branches , and thus cannot be used as a self standing

unit out s i de of BASIC . This list of addresses s hould be

very he l pful i f you wish to play around in t he innards of

BASIC, but you will also need a disassembly of the machine

language code in the region of interest , and lots of patience.

61

62
FE..00-
FE02-
FE03-
FE04-
FE07-
FE09 -
FE0C
FE0E
IT10-
FE12-
FE14-
FE16-
FE18-
FE19-
FE1B
FE1D
FE1E
FE2B
FE22-
FE2-4-
FE26-
FE28-
FE2A
FE2D
FE2F
FE31-
FE33-
FE35-
FE37-
FE39-
FE3C
FE3E
FE-40-
FE-43-
FE-45-
FE-47-
FE-4A
FE-4C
FE4F
FE52-
FES .. -
F£:56-
FESB
f"ESA
FESC
FE5E
FE68-
FE62-
FE6 .. -
F"E66-
F"E69-
F"E6C
FE6E
FE7B
F"E73-
FT75-
FE77 -
FE7A-

f12 28
9A

DB
AD 06 FD
A9 IT
BD 05 FE
A2 DB
A9 D0
85 FF
A9 00
85 FE
85 FB
AB
A9 20
91 FE
CB
DB FB
E6 FF
E4 F"F
DB FS
84 FF
F0 19
2B E9 FE
C9 2F
FB 1E
C9 47
FB 17
C9 4 C
F0 43
20 93 FE
3 0 EC
A2 02
28 DA F"E
B1 F"E
85 FC
28 AC FE
119 I£
6C FE BB
20 E9 FE
C9 2E
FB D4
C9 BD
D0 0F
E6 FE
D8 B2
E6 FF
A9 00
B1 FE
85 FC
4C 77 FE
2~ 93 FE
30 El
A2 00
20 DA FE
AS FC
91 FE
20 AC FE
DB D3

Lm;
T~\!::

CLD
LDA
LDA
STA
LDX
LDA
STA
LDA
STA
STA
TAY
LDA
STA
INY
BNE
INC
CPX
BNE
STY
BEQ
JSR
CMP
BEQ
CMP
BEQ
CMP
BEO
JSR
BMI
LDX
JSR
LDA

• STA
JSR
BNE
JMP
JSR
CMP
BEQ
CMP
BNE
INC
BtfE
INC
LDY
LDA
STA
JMP
JSR
BMI
LDX
JSR
LDA
STA
JSR
BNE

SFE:06
*SfT
fFB05
tSDB
+SDIJ
SFF
'iS00
SFE
SFB

+S20
< SFE), Y

SFElB
SFF
SFF
SFElB
SFF
SFE43
SFEE9
+SZF
SFE4F
+S47
SFE4C
+S4C
SFE7C
SFE93
SFEZA
+S02
SFEDA
< SFE), Y
SFC
SFEAC
SFEZA
(SOOFE)
SFEE9
+S2E
SFEZA
tSBD
SFE69
SFE
SFE6B
SFF
+S00
(SFE), Y
SFC
SFE77
SFE93
SFE4F
+S00
SFEDA
SFC
(SFE >, Y
SFEAC
SFE4F

MONITOR: ini ti2l iz c
initia li ze sta ck to $22
clea r decimal mod 0
initi ::-.li ze UART on 4JO board

continue
continue

CL.2.td\ TV SCR:GEN: X hi byte of end a<1d ress
A holds hi byte of screen start addre~s
hi byte: current address of screen
lo byte

store
store

set FETCH flag to $00: means input from kybd
load space char. into A
store space on screen

next
repeat
increment hi byte of current screen address
done it 8 times?
if not, branch and repeat
if so, set hi byte of screen address to $00
branch always to IN: display for $0000

ADDRESS mode (.): fetch char fro m tape or kybd
is it (/)?
if yes, branch to DATA mode (/)
is it (G)?
if yes, branch and GO: execute program
is it (L)?
if yes , branch and set FETCH flag , read -~!'l n .

JSR to LEGAL: change char . from hex to binCr~'
branch if char. is illegal hex digit
roll address in memory
IN: JSR to ROLAD
load A from current addres s
store in $FC
update screen display
branch always : get next char .
GO: execute program at current address

DATA mode (/): look for keyboard character
is it(.)?
if yes, go to ADDRESS mode(.)
is it (RETURN) key?
if no, roll in and display hex digit
else increment address lo byte

need increment hi byte?
if yes, do s o

set Y for rolling data
load data from current address in $FE,FF
store data from memory in $FC
JMP to INNER: display on screen, then to(/)
JSR to LEGAL: convert char. to binary
branch if char . was not legal hex
prepare to roll DATA nybble into memory
roll one nybble into $FC ($FD also changes_
load current data byte from $FC
store in next spot in memory
INNER : JSR to DISPLAY
branch always to DATA mode (/)

FE7C
FE7£.
FF80 -

,.J_E83-

FE8.4 -
FE86 -
fEB9-
FE8A
FE8B
FE8C
FE8E-
FE3F
FE90-
FE91-
FE9~~-

85 FB
F0 CF
AD ll\0 fC

4A
90 FA
AU 01 ;:-c

EA
U;
EA
29 7F
60
00
00
00
00

FE93- C9 30
FE95- 30 12
FE8·1- C9 3A
FE99- 30 0B
FE9B- C9 4J
FE8U- 30 0A
FE9F - C9 47
FEAl- Hl 06
FTA3- 38
FEA4- E9 l'f?
FEA6 - 29 0F
FEAB - 60
FEA9- A9 80
FEAB- 60
FEAC- A2 03
FEAE- A0 00
FEB0- BS FC
FEB2- 4A
FEB3- 4A
FEB4 - 4A
FEBS- 4A
FEB6 - 20 CA FE
FEB9- BS FC
FEBB- 20 CA FE
FEBE- CA
FEBF- 10 EF
FECl- A9 20
FEC3- BD CA D0
FEC6- BD CB D0
FEC9- 60
FECA- 29 0F
FECC- 09 30
FECE- C9 3A
FED0- 30 03
FED2- 18
FED3- 69 07
FEDS- 99 C6 D0
FEDB- CB
FED9- 60
FEDA- A0 0-t
FEDC- 0A
FEDD- 0A
FEDE- 0A

STR
E~Q

L fJ A

LSR
BCC
LDA
t-!OP
l'WP
tmP
AND
RTS
BRK
BRK
BRK
BRK

liFB
'f·FE4F
f .f CC0

SFE80
SFC01

+S7F

s torF 1 i n $FB, FETCH flag
br~ nch to keyboard input if fl ag $00

OTHER: r sad t ap e from ACIA 6850
~ hift bi t of sta tus regi s ter to C
if bit $00, ACIA lS not ready
fe t c h char. from ta_pe

63

s trip off parity bit, l eaving ASCII char.
return

CMP +S30 LEGAL: hex to binary conversion, bit 7 set if'
BMI SFEA9 branch if too small for hex error
cr·1P +S3A compare to $JA
BMI SFEA6 branch if less than $JA: was hex 0 to 9
CMP +S41 / -compare to letter "A"
BMI SFEA9 branch if between ASCII : and @

CMP +S47 compare to letter "G"
BPL SFEA9 branch if too large
SEC set carry bit, char. is A to F
SBC +S07 subtract to form binary number
AND +S0F mask off high nybble
RTS return
LDA +sse load A with neg. number for error flag
RTS return
LDX +S03 DISPLAY: displays 4 bytes (erases 1 byte)
LDY +S00 set starting point on screen: $DOC6
LDA SFC,X byte to be displayed: $FF,FE,FD,FC in order
LSR shift
LSR shift
LSR shift
LSR shift
JSR SFECA J SR DISNYB: display hi nybble
LDA SFC,X reload byte
JSR SFECA JSR DISNYB: display lo nybble
DEX repeat above for next byte
BPL SFEB0 do 4 bytes altogether
LDA +S20 $20 is space
STA SD0CA blank out display of byte from $FD
STA SDBCB continue
RTp return
AND +SBF DISNYB: display 1 nybble on the screen
ORA +S3B AND the hi nybble to zero, add $30 to byte
Cl1P +S3A compare to $JA
BMI SFEDS branch if hex is 0 to 9
CLC clear carry bit: number was 10 to 15
ADC +SB7 add 7 to get ASCII letter A to F
STA SD0C6,Y store on screen
INY increment to next screen location
RTS return
LDY •~-t ROU\.D: roll hex digits into 2 bytes of memory
ASL shift 4 times to put lo nybble in A to
ASL hi nybble in A
ASL

64
FEDF-
FEE0-
:TEl ·-
FEL3-
FEES -
FEE6-
FEES-
FEE8-
FEEB-
FEED-
FEFI'1 -
FEF2-
FEF5-
FEFB-
FEF9-
FEFA-
FEFC-
FEFD -

0A
2A
36 FC
36 FD
00 ww

D0 FB
60
AC ,__, FB
DO 91
4C 00 F ii

fl9 FF
BD 12:10 DF
AD 00 DF
60
EA
30 01
00
FE C0 01

c.c· ~
I l>l..-

F((;L_

R>:)L $F C.,><
F-:()!._ $FD,>:
DEY
ENE $ FEE0
F<: TS
LiiA $FB
Bt~~E $FE?E
Jf'1P $FD00
LDA *iFF
STA $DFE1E1
LDA $DF00
RT~;

NOP

roll ~ = bit 7 to C
roll next memory
roll next

n sxt
do f or 4 bits

F~TCH : f irst check FETCH fl ~g
i f not zero , r ead f ro m t a p e
wa ~ z ero , jump to keyb oa r d (RTS from ther e)

LOOK : looks fo r any keystroke
strobes all rows of keyboa rd a t onc e
records which c ol . s had k e ys down
return

Her e a re J addresses left over from when
t his code was in page $FF a nd thes e ~ere
i nterrupt addre sses

Changes from

?:=:OC A2 D4

the above for a C1 machine : page
screen s~ze is smal ler

?:=:23 DO 9J
:::-:::?0 BA FF

69 FF
9B FF
8B FF
96 FF

jump ta~: e read into page $02 from
supp or~ ROM program

(Changes on page $FF fo r C1 and Superboard II machines,

continued from last page .)

'?F:S O $65

E1 $17

2:2 $00

$9F

Eh $ 9F

FFEB $ 6C 18 OC:

$ 6C 1A 02

$6C 1C 02

$6C 1E 02

$6C 20 02

65

FF01.? - DB CLD SUFPORT Rmq: clu:tr decima l mode
FF01- A2 2~.::; LDX. *:!28 initiali t:e stack to $ 28
FF03- 9A TI<S continue
rF"0<1- 20 21- SF JSR IBF2;z initialize 6950 ACIA
FF07- RO 00 LD~-,~ iS00 ini tiali ze some page $02 flags, etc.
FF0'3- ac !2 02 Sl'r S0Zl2 II

F"F0C - ~;K 03 02 STY :i0203 II

rrerr ·-· sc ~c 0 --::· bTY S020~.
II

~· L .

FF .1.2 - ac ~6 0--::· ST.(S0206 II
L .

FF15- AD E0 FF LDA SF FEB initialize cursor position
FF .18- BD 00 02 STA S0200 II

n--lB - 119 20 LDA +SZB $20 is "space"
FF lD- 99 00 D(. STA SD700,Y clear screen
FF20- 99 00 D6 STA SD600,Y "
FF23- '3'3 00 DS STA SDSBB,'r II

FF26- '39 00 D4 STA SD4BB.Y II

FF29- 99 0B D3 STA SD3BB,Y II

FF2C- 99 00 D2 STA SD200,Y II

FFZF- 99 BB Dl STA SD10B,Y II

FF32- 99 B0 DB STA SDBB0,Y II

FF:JS- CB !NY II

FF36- DB ES ENE SFFlU II

FF38- B'3 SF FF LDA SFFSF,Y write "C/W/M ?" on screen
FF3E- FB B6 BEQ SFF43 branch if reached null at message end
FF3D- 2B 2D BF JSR SBF2D JSR to CRT routine in BASIC
FF4B- C8 INY next letter of message
FF41- D0 FS ENE SFF38 continue
FF43- 20 BB FF JSR SFFBB JSR INPUT: fetch char. from tape or keyboard
FF46- C9 4D CMP +S4D is it (M)?
FF48- DB 03 BI~E SFF4D if no, branch
FF4A- 4C BB FE JMP SF EBB if yes, JMP to MONITOR
FF4D- C9 57 CMP +S57 is it (W)?
FF4F- DB 03 ENE SFF54 if no, branch
FF51- 4C BB B0 JMP SBBee if yes, JMP to BASIC warm start
FF54 - C9 43 CMP •s43 is it (C)?
FFS6- DB AB ENE SF Fee if no, branch and seek new key stroke
FF58- A9 00 LDA •see if yes, set registers to zero and
FFSA - AA TAX II

FFSB- AS TAY II

FFSC- 4C 11 ED JMP SEDll JMP to BASIC cold start

FF5F 43 2F 57 2F 4D 20 JF 00
c \~ M ?

FF67- 2B 2D EF JSR SEF2n OUTPUT: char. to tape and TV screen
FF6A- 48 PHA save char.
FFbE- AD e5 e2 LnA se2e5 test for SAVE flag
FF6E- Fe 22 BEQ SFF92 if not save, branch, PLA and return
FF?e- 68 PLA pull char. from stack
FF?l- 20 15 BF JSR SIF15 go write char. on tape
FF74- C9 en CMP •san was char. a CR?
FF76 - DB lE liNE SFF93 if no, branch and return
FF78- 48 PHA if yes, push char on stack
FF79- BA TXA save X on stack too

" FF?A- 48 PHA
FF?B- A2 0A LDX HliiA $OA=10

66

FF'?D - A9 00 LDA #$00 V.Ti te 10 nulls on t ap t=: : load h \'' i t h _0
FF7F- 20 1C BF JSR $BF15 go wr ite (J .. null on t a pe ... _,

FFBZ - CA DD~ . r t:. p s o.t 10 times
FF83- DO FA BNE $FF7F do n e?
FF85 - 68 PLA y es, recover }-i '

·.r
.i\ ..

FF86 - AA TA>< "
FF87 - 68 PLA "
FF88 - 60 RTS return
FF89 - 48 PHA LOAD flag: set LOAD flag, res e t s;., v~ I - S.E;
FF8A- CE 03 02 DEC $0203 se t LOAD flag: load ena bled
FF8D - A9 00 LDA *$00 null in A to reset SA liE flo.g, d i sa bls - ' ~ .::. -FF8F- 8D 05 02 STA $0205 SA-'IE flag
FF92- 68 PLA recover A from stack
FF93- 60 RTS return
FF94- 48 PHA SA .''E: sets SA 'FE. flag
FF95- A9 01 LDA *501 $01 for set SA 1r:E mod e
FF97- D0 F6 BNE SFF8F branch always
FF:;39- AD 12 0 ':' LDA $0212 (CTRL/C) routine: checks for (C~L/" ~ ~2.K <--

FF9C- D0 19 BNE SFFB7 if (CTRL/C) flag in $021 2 is C::!:...J... rc..-:·...;_~- -
~ --- ' FF9E- A9 01 LDA +$01 strobe row 1 of keyboard

FFA0- BD 00 DF STA SDF00 "
FFA3- zc 00 DF BIT SDF00 check for CTRL key depressed
FFA6 - 50 0F BVC SFFB7 if not, branch and return
FFA8- A9 04 LDA 4$04 . strobe rmv 4 of keyboard
FFAA - BD 00 DF STA SDF00 "
FFAD- 2C 00 DF BIT SDF00 chec k if key (c) i s depressed
FFB0- 50 05 BVC SFFB7 if not, branch and return
FFB2 - A9 03 LDA +S03 if so' l oad r, .r. with J and jump to BASI C
FFB4- 4C 36 A6 JMP SA636 II

FFB?- 60 RTS return
FFB8- 2C 03 02 BIT $0203 INPUT: read tape and/or keyboard
fFBB- 10 19 BPL SFFD6 branch if LOAD lS disabled : JMP to ke--ooar <i
FFBD- A9 02 LDA 4S02 poll row 2 of keyboard
FFBF- BD 00 DF STA SDF00 "
FFC2- A9 10 LDA +S10 check col. 5 of keyboard
FFC4- 2C 00 DF BIT SDF00 was it "space bar"
FFC?- D0 0A BNE SFFD3 if yes, branch to disable LOAD and go - o ~ybd
FFC9- AD 00 FC LDA SFC00 if no , check status of 6850 ACIA
FFCC- 4A LSR "
FFCD- 90 EE BCC SFFBD branch if data is not yet ready
FFCF - AD 01 FC LDA SFC01 else load char. from ACIA to A
FFD2 - 60 RTS return
FFD3- EE 03 02 INC 50203 disable LOAD flag
FFD6 - 4C ED FE JMP $FEED JMP to keyboard, get char.
FFD9 - 00 BRK
FFDA - 00 BRK
FFDB- 00 BRK
FFIJC - 00 BRK
FFDD - 00 BRI< /

FFDE- 00 BRI< ~

FFDF- 00 BRf<
FFE0 - 40 cursor home
FFE1 - 3F l ine SlZe
FFEZ- 01 machine type: C1 is zero, C2 one

FTEA-

FFt.:6-
nT7-
FFT8-
FFL9-
FFEA
FFEB
FFCE
FFF!
FFT4-
FFF7-
FFFA-

f-TFC
FFFD
FFFE-

BF07-
BF0A-
BF0B
BF0D
BF10-
BF12-
BF14-
BF15 -
BF16-
BF19-
BFlA
BFlB
BF 1D
BF1E
BF21-
BF22-
BF24-
BF27-
BF29-
BF2C -

00
03
FF
3 F

00
03
FF
3 F
4 C B6 rF
4•::- 6 7 f T

4C 99 FF
4C 89 IF
4C 94 FT
30 01
00
FF
C0 01

AD 00 FC
4A
90 FA
AD 01 FC
F0 FS
29 7F
60
48

Jt·!P

JI'1P
Jt;IP

Jt·1P

JI1P
f;!•li

!FFBB
SFT67
SFF99
SFF89
SFF94
tFFFD

I NPUT
OUTPUT
(CTRL/ C)
LOl\D fl a g set
SAVE fl ag set
NMI addres s , non-rnaskable interrupt
re s tart address

"
address for maskable interrupt

LDt1 SFC00 Th.F~ PORT, INPUT: 6850 AC IA
LSR move receive data flag to C
BCC SBF07 branch if data not ready
LDA SFC01 else load data into A
BEO SEF07 branch for more data if data was a null
FIND •s?F else AND off the bit 7
RTS return
PHA TAPE PORT , OUTPUT: 6850 ACIA

67

AD 00 FC
4A

LDA SFC00 after saving data in A, loadstatus register

4A
90 F9
68
8D 01 FC
60
A9 03
8D 00 FC
A9 Bl
8D 00 FC
60

LSR shift twice to put Xitli t data flag in C
LSR
BCC SBF 16 branch if AC IA not ready
PLA else pull data into A
STA SFC01 send to ACIA
RTS return
LDA • s 03 ACIA initialization
STA SFC00 perform master RESET of ACIA
LDA •sBl load ACIA control register for
STA SFC00 8 bits, no parity, 2 stop bits
RTS enable receive interrupt logic:return

Page $FF in C1 and Superboard II machines is like that in the

C2-4P except where noted below.

FF04 - OD

FFOF

FF12 - 34

FFJ5 - SE
FF55 - 68
FF69 - SA

FF8B - 99

load jump tables from FEOF to page $02

initialize ACIA using routine at FCA6

initialize page $02 and c l ear screen

similar to FFJ8 onward of C2-4P

table "C ,W ,M,D ? null"

like OUTPUT of C2-4P at FF67 - 88 except write on
tape at FCB1, not BF15

LOAD and SAVE

(CTRL/C) routine like C2- 4P at FF99 - B7

FFBA - DA INPUT , C1 keyboard is inverted from that of

FF9B - B9

C2-4P. ACIA is at FOOO

68 ERROR CODES

CODE MEANING
BS B lw Bad Subscript: Array index out of DIM range.

CN C ~ CoNtinue error: Incorrect CONTinue from a BREAK.

DD D / Double Dimension: Array DIMensioned twice, or DIM after
using the array set the DIM to 10 by default.

FC F / Function Call error: Either a BASIC function such as
SIN, or an internal function such as AND, has been

given an inappropriate variable. ·

ID I,.,.,. Illegal Direct: INPUT or DEF FN commands cannot be used
in the immediate (direct) mode.

LS L IIIII Long String: String longer than 255 characters.

NF N ._ NEXT without FOR . ..
OD

OM

ov

Out of Da ta: Have done a READ past the end of the last
DATA statement.

Out of Memory: Either the program and variable tabl e

used up memory, or the stack has overflowed from
GOSUB's etc. This error may occur on the first

command after a warm start. Just repeat the command.

Overflow: Floating point number too large.

OS 0.. Out of String memory.

RG R \ RETURN without GOSUB.

SN SyNtax error: Incorrect spelling of commands, etc.
(Have you a command hidden in a variable name, such
as "TO" in "PAGETOP"?)

ST S~ String Temporaries: String expression too complex.

TM

UF

us

Type Mismatch: String variable where a numerical
variable was expected, etc.

U -.-... Undefined Function.

ua.. Undefined Statement:

line.

GOTO or GOSUB to a non-existent

/.¢ / ~ Division by zero.

