

ALL ABOUT

OSlI

BASIC IN ROM

SECOND EDITION

Second Printing

Copyright 1981
Edward H. Carlson
Okemos Michigan
Printed in the USA

0ST 6502 8K BASIC is copyrighted by Microsoft. The MONITOR and
the 8K BASIC's handlers are copyrighted by Ohio Scientific Inc.

CONTENTS

Basic BASIC

Introduction and Overview
Some Definitions
String and Numerical Constants
Variable Names
Commands and Editor Commands
Immediate Mode Commands
Used in RUN Mode
RUN Mode Commands
String Operator
Numerical Operators
Boolean Operators
Bit Manipulation Operators
User Defined Functions
String Functions
Numerical Functions
USR(X) Function
Arrays
Bugs and Fixes
Garbage Collector

Elegant and Exotic BASIC

Speed, Space, and Clarity
Debugging and Utilities
Program Format
Utility Programs

Pr 1nt AL

Error Message Fix

Line Renumberer

Branch Locator

Program Compactor

Good Random Number Gen.

and others
Tapes: BASIC and Homemade
Autoload Tape

Tapewriter Program
Hooks Into BASIC
BASIC Trace
Keyboard and Screen Tricks
Two's Complement Numbers
Floating Point Numbers
Tokens
Source Code and Variables
Array Storage
The Stack
OSTI Newsletters
6502 Publications
OSTI Software Houses
Memory Map, Pages $00,01,02
BASTC ROM Addresses
MONITOR Disassembly
Support ROM Disassembly
Error Codes

OO N e e
O 210 © 00 00=T O\ ON ONVEOATIAS %0 IV B B

INTRODUCTION

This book is intended for users of OS5I Microsoft BASIC-IN-ROM,
‘ersion 1.0, Rev. 3.2, which 1s uged on all 0SI BASIC-IN--ROM machines.
The material 1s presented on 2 levels. The first i1s pure BASIC. The
complete set of commands, statements, functions and operators is listed,
together with detailed explanations of their applicability and functioning.
Many examples are given of their use to accomplish various results, and

of pitfalls to be avoided.

The second level takes a systems viewpolnt. It examines the
functional parts of the BASIC system, including many details of the
machine language implementation of BASIC, which allow exotic programs to
be written. Using it, your programming will improve in speed, clarity,
economy of storage and ease of human interface to screen, keyboard and

mass storage. Sample utilities are included, such as line renumber.

BASIC runs in two modes, the immediate mode and the run mode.

Following a cold start or a warm start, the prompter OK agppears on

the screen to indicate that the machine is in the immediate mode and
ready to accept keyboard input. To understand BASIC, we need to
keep in mind 5 areas of memory containing code. They are the BASIC
interpreter stored in ROM from $A000 to BFFF, the line buffer stored

in zero page from $13 to $59, the source program you write, stored
from $0300 up, the variable tables stored immediately after the

source code, and the sitring storage at the end of RAM memory.

With the machine in the immediate mode, we enter a line of
material from the keyboard. The entered material appears on the screen
and in the line buffer. When we hit the (RETURN) key, one of two things
will happen. If the line started with a line number, the line is
stored in the proper spot in the source program and we continue in
the immediate mode. If the line did not start with a line number,
the interpreter executes it from the line buffer exactly as if it
were a one line program. This one line program may consist of several
statements separated by colons, and may create, refer to, or alter the

- variable tables.

SOME DEFINITIONS

Constant Constants.are of two types, numerical and string. ,
Examples: numerical string —
2.62 "Computer"
Variable Variables are of two types, numerical and string. They
are distinguished from each other by appending a $ sign on the
end of string names. Examples: numerical string
AY AY$
Command A command causes the computer to execute some definite
procedure. Examples: PRINT, LIST, RUN, X=6. Some commands
need expressions to be complete. Example: ON ... GOTO

as used in: ON J*(J+1) GOTO 30, 40, 50

Operator The usual algebraic operators + - #* / plus some others
such as < , 2 ,%=",4) .

Function A function has arguments (numerical or string) and
returns one value (numerical or string). Examples:
SIN(X), LEFT$(A$,2)

Expression An expression is a set of constants, variables, operators
and functions (which themselves may have expressions as
arguments) which has a definite numerical or string value.
Examples: A, 3.3, 2%X+Y, 3.1+A®SIN(PI/2), "AT THE END",

A$, N$+CHR$(I+JT)+"HELP"

Statement Each statement consists of a single commend. Example:
CLEAR. The command may require constants and/or operators.
Example: PRINT A(X,2)

Line A line consists of one or more statements separated by a
colon ":" and possibly starting with a line number in the
range 0 to 63999. Examples:

22 PRINT
50 A=3:GOTO 71
LIBT

STRING CONSTANTS

The most common form for a string constant is a set of ASCII
characters set between gquotes. Example: "YOUR TURN" But other
(non-printing) ASCII characters, or indeed, any hex number can be
included in a string. Examples:

100 A$="YOUR TURN"+CHR$(13):REM 13 is the CR code
200 HO$=CHR$(14):REM 14 is the graphics character of a house
300 PRINT "THIS IS A HOUSE"+HO0$

NUMERICAL CONSTANTS

Numbers are represented in source code as integers, decimals,
fractions or in scientific notation. Examples: 7, 0.03, -2.E-5, 3/4

Numbers cannot, unfortunately, be represented in source code in
binary or hexadecimal form. When numbers are read from source code
for use, they are converted into a floating point binary number with a
‘Vone byte exponent and a 3 byte mantissa. The magnitude of the floating
point number varies from about 10-38 to 1O+38. The largest integer
that can be stored without round off error is 25673 - 1 = 16,772,215.
When large or small numbers are displayed on the screen, scientific
notation is used and the display shows considerably less accuracy than
what is in memory. Example: a one line program

1 PRINT 16772215
RUN

1.6772E87
VARIABLE NAMES

There are two representations of each variable name that we will
consider, the name you give it in the source program and:the repre-
sentation of that name in the variable table. They may not be the same.
In the source program, names must start with a letter and may contain
any number of letters, numbers and spaces. A name ending with the symbol
$ is a string variable. Names must not contain DASIC reserved words
such as SIN, FOR or TO. BASIC ignores all spaces in a line of program.
In the variable table, the name is stored as 2 bytes of ASCII repre-
senting the first two characters of its name in the source program.

If the variable in the source program is a single letter, then in the
table the second byte of the name is $00. If the variable is a
string, then $80 is added to the second byte of the name in the table.

I

n these examples, remember that the ASCII code for A is $41 and for 1

is $31.
source name in the table table name

A $41 00 A

A$ L1 80 A$

A1 L1 31 A1l

AA 41 41 AA

A1$ b1 B1 A1$
A11% 41 B1 A1$
AGOTOB (illegal) -——

&% PIME L1 31 A1

Notice that no record in the table tells how long the name was
in the source. All characters past the first 2 are ignored (except
the $ for a string). The effect of truncation of the source name
is demonstrated i i :

emonstrated in this program 1 A 1 TIME$="WHO"
2 PRINT A1$

RUN
WHO

COMMANDS

We will divide commands into 3 groups. Editor commands are used

only in the immediate mode. Immediate mode commands can also be

used in the run mode, but may perform in a defective manner there.

The largest group comprises the run mode commands and all these also

work satisfactorily in the immediate mode.

We depart from the usual nomenclature because it is arbitrary and
confusing. For example, NEW is often called a "command" (it erases
the source program) while CLEAR is called a "statement" (it erases the
variable table). Similarly, the two simultaneous keystrokes (CTRL/C)
are called a "special character" (it causes a break in running) while
STOP is called a statement" (it causes a break in running too). My
nomenclature follows the rules set up in the section "SOME DEFINITIONS".

EDITOR COMMANDS

While in the immediate mode, a very simple capability is present
for editing the lines of text. We will show key strokes in parentheses,
e.g. (BREAK). Multiple, simultaneous key strokes will be separated
with a /.

(SHIFT/0) Types a _ and erases the last character typed from
the line buffer. It doesn't erase it from the screen.
This method of "erasing" is left over from the teletype

days. Several software houses have "line editor" programs
that give true backspace erasing as well as other editor

functions.

(SHIFT/P) Types an @ and erases the line from the line buffer.
You still see the line on the screen.

(RETURN) Terminates the line. If the line did not start with a

number, the line is interpreted in the immediate mode.
If the line started with a number, the line is stored as
source code, and the machine returns to the immediate mode,

ready for more text input.

(CTRL/0) Suppresses writing to the screen until another (CTRL/0)
is typed.

123 (RETURN) A line number without a statement following it will
erase the corresponding line in the source program.

IMMEDIATE MODE COMMANDS

RUN Enters run mode. Starts interpretation and execution
of the source code beginning at the first line (stored at
$0301). Discards the old variable table and constructs a
new one as 1t interprets.

RUN 131 Starts at line 31 of the source code. Gives US ERROR
if there is no line 31. Otherwise runs and discards the
0ld variable table and makes a new one.

GOTO 31 Starts running at line 31. Keeps the old variable
table.

GOSUB 31 Jumps to line 31 and runs. Keeps o0ld variable table.
Expects to find a RETURN statement.

LIST Lists the source program. May be stopped with (CTRL/C).

LIST 31 Lists line 31 only.

LIST 31-45 Lists lines 31 through 45.

LIST 31- Lists lines 31 to the end.

LIST -31 Lists from start of program through line 31.

(CTRL/C) Interrupts execution of the source program or LISTing

and returns to the immediate mode. (CTRL/C) may be disabled
by POKE 530,1 and enabled by POKE 530,0.

CONT Continues any procedure (except LIST) that has been
interrupted by a (CTRL/C) or a STOP.

LOAD Sets the LOAD flag. This enables the tape port and
disables the keyboard (except the (SPACE BAR) key is
polled). Then any input from tape is put into the line
buffer and treated as usual, depending on whether it
starts with a number or not. To exit from LOAD, hit
the (SPACE BAR). To further understand LOAD, look at the
code in the support ROM at $FF89 and FFBS.

=
T

EW Deletes the present program. It does not erase it
from memory however. One thing it does is to load $00

into addresses $0301 and 0302. This makes a termination
signal for the program at a point where there are zero

lines in the program. If you wish to recover the program,
use the MONITOR, and starting at $0300, step along, looking
for the address of the second line of the program. Put

the address back into $0301 and 0302 in the format described
under the heading SOURCE CODE AND VAR. TABLES. This is

SAVE

NULL

RUN 31

LIST

CONT

LOAD

NEW

SAVE

NULL

not enough of a fix to be able to RUN the program, but you
will be able to SAVE, LIST it to tape, then restart the Py
machine and read the tape back in.

Used to write to tape. The procedure for saving BASIC
programs is SAVE, (RETURN), LIST, (but don't type (RETURN)
yet), start tape and wait a few seconds to give a leader,
then hit the (RETURN) key. To save part of a program,
use the appropriate LIST, eg. LIST 100-300. Exit from the
SAVE mode by doing LOAD, (RETURN), (SPACE BAR).

It works like this. SAVE calls the short routine at
$FFOL4 to set a flag in $0205. Then whenever BASIC calls
OUTPUT (at $FF67) to write to the TV screen, (using the
routine at $BF2D), it also transmits each character to the
tape port. The time required for transmission by the 6850
ACIA slows down the whole cycle, which is why you see
the rate of writing to the screen slowed down.

Used to insert nulls at the start of lines of output
to tape. Example: NULL 5. The number of nulls inserted
can vary from O to 8. However, the number of nulls
requested is poked into $0D, so you can request up to
255 nulls by POKEing into address 13.

TMMEDIATE MODE COMMANDS
USED IN RUN MODE ~

Same as "CLEAR:GOTO 31".

Or LIST 31, etc. Does the indicated LISTing, then goes to
immediate mode. A very unhandy characteristic!

Program hangs until you enter (CTRL/C) from the
keyboard.

Sets LOAD flag, with usual results. To get back to
normal, next statement should read INPUT A$, and then
hit (SPACE BAR).

Poison! If NEW is encountered in your program, it
"erases" your program and goes to immediate mode!

Works normally. Sets the flag in $0205.

Works normally.

RUN MODEZ COMMANDS
ST L. T oia The replacement command. LET is optional, and in fact
is not often used. Examples:

5 LET A = 2

7 BBS=YCOAT

REM ... Remark. This statement allows comments to be included
in the source program. These statements are ignored during
running. Examples:

ROM *%% PROGRAM ITCH %

W B
Qo

2:REM A4 IS THi NUMBER OF BITES
Statements after a REM cannot be reached by the interpreter.
30 A=2:REM CASE TWO:B=4

The statement "B=4" cannot be reached. If the RiMark
follows a GOTO ... , the word REM can be omitted because
the interpreter will never reach far enough into the line
to detect the syntax error. Example:

10 GOTO 33:G0 MOVE PIECE is as good as
10 GOTO 33:REM GO MO'E PIECE

Unlike some compilers, BASIC doesn't pack repeated characters
into compact form. Every character takes one byte in

memory, These two statements take the same space in source
memory:

1 123456789ABC

REN
REWV XX

2

1

=

FLOW DIVERTING COMMANDS There are quilte a few commands that change the
order of execution of statements in the program. These follow:

GO0 Example:

GOTO 9900

In fact, such variable addresses are not allowed in any
] er flow diverting commands below.

GOSUB - < Subroutine calling command. Example:

The statements are executed in the
arder 5,7:13,15,8,10.

S =2

¥ 60SUB 13
8 B=3

18 END

13 =11
15 RETURN

O w GO0 . . » Example: 5 ON M GOTO 10,20,30

The flow is: if M=0 go to next statement after 5
M=1 go to statement 10
M=2 go to statement 20
M=3 go to statement 30
M=4 or larger, statement after 5

There is no 1limit (except line length) to the number of
addresses after the GOTO.

ON...GOSUB... ZxXample: 5 ON - GOSUB 10,12,15,3

If Z=0 or Z is greater than 4, go to the next statement.
If 2= 1,2,3,4 then GOSUB 10,12,15,3 respectively. Upon
RETURN, goto the next statement after 5.

IF » JEOT0x o & Example: 10 IF A=2 GOTO 100

If A=2 then the next statement executed is line 100. IT
A#2 then the next 1line aflter Tthe IF...GO0T0. . . s
executed. In place of "A=2" there can be any expression
that has a numerical value, or otherwise can be interpreted
as Boolean "false", i.e. false has the numerical value zero.
If the expression is not zero, then 1t is assumed to be true.
This 1s a more extended interpretation of "true", which
should actually be the numerical value -1. Examples:

IF AS="DA" GOTO 938

IF (INT(X) AND 12)=8 GOTO 4

IF 3%X > PEEK(Q) GOTO 65

IP Y GOTO 21:GOES TO 21 UNLESS Y IS NOT EQUAL TO ZERO

(IF...GOSUB...) Doesn't exist, use IF...THEN GOSUB... instead.

L v o o "THE « + « If the expression after IF is true, then all the

FOR «=, .

statements after THEN are executed. If not, then the
next line is executed. IExample:

10 IF X < 7.2 THEN X=7.2:GOSUB 10:GOTO 30

.TO... Loops. There are several subtle points that are

important for trouble free use of loops, so this discussion
will be quite long. Example:

28 FOR I=1 TO 32

38 FRINT I

40 NEXT 1

568 PRINT "I IS MHOW®:I
989 END

OK
R

A W

femd
bt
58]
Z
(]
.

i

(nesting)

: _—

-

After entering the loop. you may jump out before the
normal exit. The loop variable retains its current value:

|

28 FOR I=1 10 2
38 IF I=Z THEN EB8
48 MEXT I
58 PRIMT "I IS HOW™:1I
55 END
B PRINT I:END
53 END
OK
RUM
poe

The stack still records that you have
but not exited through NEXT. See the discussion under

STACK. You may Jjump back into a loop you have jumped out of,
but you may not jump into a virgin loop. Reading NEXT...
without first going through FOR... causes an NF ERROR break.

entered the loop

Increments other than 1 are implemented using STEP:

ig FOR X=2.1 T0O 3.7 STEP 8B.35
18 FOR X=188 TO -33 STEP -18
18 FOR X=1+ 70O 18 STEP 8.1sX

Loops can be nested. (Up to 12 deep).

18 FOR I=8 TO 1:FOR J=5 TO B
3@ PRINT I;TAB(S) J

468 MEXT J
45 PRINT

5@ NEXT I
S5 END

*BETWEEN LOOPS™

OK
RUN

B 5
BETWEEN 1LGOPS
1 5

1 8
BETWEEN LOOPS

The index can be left off any or all NEXT statements in
the program, and when encountered, a NEXT will be
assumed to apply to the last FOR... encountered by the
interpreter. But this is somewhat dangerous. The '
variables are put on the NEXT statements to serve as a
check that the logic of the actual program is the logic
that the programmer intended.

18 FOR I=8 TO 1:FBR- I=5:F0 &
38 PRINI-I5TABCSY J
48 NEXTINEXT

The loop 1s always run at least once since the test for exit
occurs at the NEXT statement, after the loop variable
has been incremented. Example:

Upon entering the FOR... statement from outside the
loop, the initial value of the loop variable is calculated,
then the value which determines the exit condition is
calculated. The increment size is also determined
(see STEDP above). These values will not change during the
rest of the time spent in the loop. The statemcnts
in the body of the loop will be repeatedly executed but
the FOR... statement will not be again interpreted. Study
this example carefully:
18 A=9.8
28 FOR 1I=2
3@ PRINT I
@ HEXT
PRINT "I IS MNOW";1
END

7 10 3Z#1

ot
iy

(G

1514

R

W

[PJow
LS

I IS NOW 4.2

In the body of the loop, the loop variable may be redefined:

Z@ FOR I=1 TOQ 32

3a I=2

48t NEXT 1

5@ PRINT "I IS NOW";1
99 EHND

oK
LOOPS FOREUER

{

I

=

3

When the interpreter encounters a NEXT I, it clears the
stack of any loop calls nested inside the FOR I=... NEXT
loop. In the example below, looping over J 1s never done,
and when NEXT J is finally ah@ﬂUﬂtDred the stack has no
current reeord of @ FUOR J -u:+; S0 & NEXT without FOR
error break occurs.

18t FOR I=1 TO 3:FOR J=1 TO 4
2@ PRINT I3;7AB(SY J

48 MEXT 1

5@ NEXT J

339 ENII

Ok
=M

AR AV o
Pt

7H

oK

s

F ERROR IN 58

11

When loops end together, a shorter NEXT statement can be used:

i FOR I=1 TCQ 3:FOR J=1 T0 4
3@ PRINT I:7AB(S) J

48 NEXT J,1

88 END

For storing initial data in a program. Example:

ig DATA &,7,8,%,"Y" ,CHR®(137
15 FOR I=1 7O 3:READ A::NEXT
17 PRINT R

28 READ A%:READ B$:READ CS
3B PRINT A%,B$%,CS$

99 END

oK
RUN
g
bt Y CHR$(13)

"Y" are alternate ways to store string data.
glso treated as & string, not & function.

i_"e 10 above uses 27 bytes to store 13 bytes

is i.‘C:E9ﬁt not the number of data statements
their DlMcomend in the program. Example:

ts are reasonably economical of storage space.
s 6 bytes plus 1 byte each for commas, spaces,

the order of the data 9y it is stored in the

TR TA. B2 30k 5 is the same as
10 DRABA ~1 o2
11 DATA 3,4,5 except the latter takes up more room

in memory.

12

READ...

RESTORE

CLEAR

PRINT . « .

DATA statements cannot contain variables, or be modified.
In ?he example below, the interpreter treats the A as a
string of data, while X is a numerical variable.

18 A=3
2B DATA A
2@ READ X:PRINT X:END

CK
RUM

5N ERROR IN 20

As the above examples show, entries in DATA statements
must be transfered to other statements for use. As READ
statements "use up" data, a pointer is set to the next
available data entry. The DATA statements are used in

numerical order in the source program, no matter where the
READ statements are located.

18 BDATA 1,2

28 GOSUB 88

3® REARD B,C

48 PRINTA;B;C:END
S4¥ READ A:RETURN
92 DATrA 2,4

8134
RUM
1 -2 .3

This command restores the above mentioned pointer
to the first entry in the first DATA statement in the
program.

This statement discards the variable table (by resetting
pointers) so that it will start being reconstructed from new
as the program continues. It also has the effect of a
RESTORE command on the DATA pointer.

The variable and expression values following the word
PRINT are displayed on the screen. In writing a source
program, the symbol "?" can be substituted for the word PRINT.
PRINT without any expressions prints a blank line. There
are two kinds of separators in the list of items to be
printed following a PRINT command. They are comma and
semicolon. The comma organizes the material into 5
columns separated by 15 spaces. If the material in a
given column is longer than 15 spaces or otherwilse would
overlap the next column, the next column is skipped. IT
there are more than 5 items in the list to be printed, then
more than 1 line is used.

The semicolon puts the printed fields adjacent to each
other. Thus strings would be printed without spaces between
them. Example: 10 PRINT "A" ;2"

RUN
AZ

i3
But numbers have a space attached to each side so:
10 PRINT 1:2

RUN
L2

{

Comma and =zemicolon separators can be used in the same list.
The combinations get complicated and it is advised that you
experiment to see directly what effects can be obtained.

FUNCTIONS FOR PRINT There are two functions that are used 1in PRINT
statements so we take them up here.

SPC (X) This function is used in PRINT statements to add
spaces between outputs from the list. The argument of the
function is a numerical constant, variable, or expression
that can take on values between 0 and 255. If it is not an
integer value, it is truncated to an integer value. The
value 0 is interpreted as 256. Large values will cause
the printing to centinue cn the next line, or even later.

1 PRINT "1234567¥89"
Z PRINT SPCEZ2 Y

RuM

23456789
A
TAB(X) This function acts like the tab function of a type-
writer. Example:
e
1 PRINT ®"123456789812345"
2 PRINT TAB(2) "A" TAB(18) "B"
OK
RUN
1234567839812345
A B
INPUT. .. This command allows input of data to the machine from
the keyboard or tape. It can be rreceded by a comment.
18 INPUT "LENGTH, HEIGHT®";L,H
28 PRINT "LENGTH ";L,"HEIGHT ";H,
OK
RUN
LEMGTH, HEIGHT? 3,5,66.8
LENGTH 3.5 HEIGHT 66
Strings can also be entered.
1@ INPUT “NAME";NAS
28 PRINT NAS
-
OK
RUN

NAME? EDWARD H. CARLSON
EBWARD H. CARLSON

14

DEF FH...

POER, . .

If you input more numbers or strings than were asked for
an PEXTRA IGNORED message appears, and the interpreter
continues with the program.

e INPUT A.B,C

OF
RUMN
7 23955

7EXTRA IGNORED

If there is a type mismatch or other confusion to the
machine, it may issue a ?REDO FROM START instruction.
Then type all the data in from the start of the INPUT
ingtriction.

1@ INPUT A,B,C
28 PRINT A,B,C

OK

RUMN

?1,2,A

?REDO FROM START

7 4,5,6

4 5 =

If INPUT requests more items than you supply, it will request
more with a double ?°?

18 INPUT “"NAME"; NA%.A
28 PRINT LEFTS(NAS, 1)
38 PRINT A

OK

RUN
NAME?™? ED
% 2

E

2

If you answer (RETURN) to the INPUT (without giving a
numeral or string answer) the interpreter returns to the
immediate mode. You can do the usual poking and tweaking
and then return to the program with a CONT. The interpreter
will again query you with the INPUT statement.

Used to define a "user defined" function. The function
can be defined anytime before use. This is further explained
under the heading "USER DEFINED FUNCTIONS".

This command stores an integer N in a location X of
memory. Example: (Stores 5 in 57088)

18 X=2:KB=57888:POKE KB, Z2#%X+1

ul

~

-

=

PEEK(X)

STOP

END

15

An error is reported if the number to be stored is out
of range. Programs that unintentionally POKE values into
pages $00, 01, or 02 can cause very peculiar errors as the
run continues, eventually BASIC may become so scrambled
that a cold start must be done. However, the most common
error can be fixed more easily. Since variables that haven't
been defined are treated as having value zero, it quite often
happens that address $0000 is ruined. Then if the (BREAK)
key is hit, a warm start cannot be accomplished. This can
be corrected by using the MONITCR to put $4C back into $0000.

This is a funetion, not a command. But it is the
natural opposite of POKE so we discuss it here. PEEK
returns the value of the contents of address X. Of
course, the value lies in the range O to 255. Example:

18 I=3:PRINT PEEK(I*2Z56)

Gk
RUM
@

STOP causes an exit to immediate mode with the
printing of a break message. Example:

i1 FOR I=1 TO 18:PRINT I;
za IF I=3 THEN STOP

38 HEXT
Gk
RUM

I s A
BREAK IN 28
OK

This command is optional under many conditions. If
the program reaches the last line of source code and that
line doesn't transfer the flow to another program line,
the program ends and the machine exits to the immediate mode.
The END statement is necessary if the program is to end
in the middle of the source code. You may have any number
of END statements.

18 A=2
28 IF A=18 THEN END
38 A=A+1:PRINT A;:60T0 26

OK

RUN

3 4 5§ & 7 8 9 1@
OK

STRING OPERATOR

There 1s only one string operator, concatenation, using a + sign.

18 A$="1":B&%="A"
28 C$=A%$+BS%
38 PRINT [%,B%,C%

OK
RUMN
1 A 1A

OK

All strings that are not contained in BA3SIC source code statements
are stored in "string memory" at the end of RAM memory. In the
example above, A$ and B$ are stored in line 10 of the program as
you see, but C$ is stored in the top 2 bytes of RAM memory.

NUMERICAL OPERATORS

= Negation =5, =Ni
~ (SHIFT/N) Exponentiation 2.3=8
® Multiplication

/ Division

+ Addition

- Subtraction

The above numerical operators have their usual meanings in
arithmetic and algebra and may be used with parentheses to make
explicit the order of evaluation, Inappropriate order may give
an error message. Consider the following examples done in the
immediate mode:

?2%-3 get -6
PR=%3 get SN ERROR
TR get 5
P2a-1.5" 'Bet0.553553
?22,1.5 get SNERROR

BOOLEAN OPERATORS

These operators return values of -1 for TRUE and O for FALSE.
Why these particular numerical values? Well, zero for FALSE seems
reasonable enough, and then TRUE should be NOT O. But in two's
complement form, NOT %0000 0000 0000 0000 is %1111 1131 1111 1111=~1.
The % tells us that the number is in binary form, and you may want
to consult the sections on TWO'S COMPLEMENT NUMBERS and BIT
MANIPULATION OPERATORS.

b} Greater than

{ Less than
£ or &) Not equal

= Equal to

{= or ={ Less than or ecgual to
»= or =) Greater than or equal to

Examples:
18 X=Z:PRINTZ2=X:1X=2:X=31%>3; X3 18 R=Z:Y=}lZ
Z8 PREINTY
FEUH ; O
=1 =1 & "8 -1 RUN
5]

Two strings can be "compared" by using these operators. By this
is meant only that the first character of each string is treated as
an ASCII (or other) number. Then these 2 numbers are compared.

18 A$="ABC" : B#=CHRE¥(3B
28 PRINT A%.BS$
38 PRINTASC(A® I, ASCIESE)

48 PRINTAR%-BS

&5 84

BIT MANIPULATION OPERATORS

Numbers that are in the range of -32768 to +32767 inclusive are
treated as 16 bit two's complement numbers by the following operators.
(Truncation to integers is performed, if necessary.) Consult the
appropriate section for an explanation of two's complement binary
numbers. Some examples:

28 PRINT 1 OR 231 OR 3088
38 PRINT 1 AND 2
48 PRINT MNOT ZEE

oK
RUM

2 -Zeagl
3 38A1
a

7FC ERROR IN 48

17

OK

AND For each bit in the pair of numbers connected by AND,

the corresponding bit in the result is 1 if and only if

both the bits are 1. This is most easily seen by an example

in binary notation:

%0101 1111 1100 0000 AND
1100 1010 0000 1111 = 0100 1010 0000 0000

OR Inclusive OR. The resulting bit is 1 if either (or Dboth)

of the given numbers have a 1 for that bit position.

0101 1111 1100 0000 OR
1100 1010 0000 1111 = 1101 1111 1100 1111

NOT Each bit of the number is reversed, 1 for 0 and O for 1.

NOT 0101 1111 1100 0000 = 1010 0000 0011 1111

USER DEZFINED FUNCTIONS

Functions can be defined any time before use by a DEF FN...
statement. Functions can be redefined any number of times. The
definition may involve other user defined functions but may not
be recursive (i.e. the definition of a function cannot involve itself).
The function has 1 variable but other parameters can also occur in
the definition and will be given their current values at the time

of use. Any number of functions can be used in one program. Study
this example carefully:

12 DEF FNA(X)I=X

15 X=Z:PRINT FNAC(X:
28 DEF FNA(Y)=2%Y
Z5. ¥=3:PRINT FMNAa(Y)

Not allowed: FNA$(X), FNAS(X$), FNA(X,Y), FNA(A$). Function
variables are stored in six bytes, among the numerical and string
single variables. There is an $80 added to the first byte of the
name to signify that the variable i1s a user defined function. Note
that one is allowed to have all the following 5 variables in the
same program because they are always stored under different names
or in separate parts of the variable table.

AB, AB$, AB(TI), AB$(I), FNAB(I)

STRING FUNCTIONS

String functions either have a string as an argument, or yield
a string as a value, or both. Those that return a string value
have a name that ends in $

ASC(A$) Returns the ASCII value (decimal integer) of the first
character in the string A$.

CHR$(A) Returns the character whose ASCII value is A. If you
have the graphics chip, CHR$(A) will print the corres-
ponding graphics character for A such that O0SAL255.
This program prints all the graphics characters
(except for I=0, because the CRT routine at $BF38
ignores nulls). When line 10, line feed, is printed,

a line feed occurs. When 13, CR is printed, a carriage
return occurs. (I.e. the cursor moves far left
on the TV screen.)

LEFTS(AS,I)

RICGHT$(AS,TI)

MID$(AS,I,JT)

IEN(AS)

STRE(X)

VAL(A$)

FRE(AS$)

19

Gives the left most I characters of A$. If I=0 there
is an rC ERROR reported.

Gives the right most I characters of A$. If I=0 an
FC ERROR is returned.

This is intended to give a string J characters long,
starting at the Ith character of A$ and continuing to
the right. But in no case is MID$ longer than from
the Ith character to the end of A$ inclusive, even for
large J. If J is omitted, then MID$ goes to the end
of A$. If I>LEN(A$) then MID$ is of zero length.

Returns the length of A$

Gives a string which is a representation of the
number X. Example:

1@ N=6.42IEZ3 K
28 N$="AVOGADRD' S NUMBER IS *+STR$(N)
36 PRINT N$

4% PRINT LEN(STR$(N))

oK

RUM

AVOGADRO” § NUMBER IS B.8Z3E4+23.
18

Note: You see only 8 characters for N in line 10,
but a blank 1s attached to each end in making
STR$(N), for a total of 10 characters.

The opposite of STR$. If A$ is a string representing
a number, VAL returns the corresponding value as

a decimal number. If A$ does not represent a number,
AL returns 0. Examples: ‘

18 AS=~"-8.0%E-21"
28 BS="AT R———
39 FRINT VAL(AS), UALCEE

oK
RUN :
-BE-23 &

The same as FRE(8), so why bother?

20

NUMERICAL FUNCTIONS

In the following functions, the argument may be any constant,
variable or expression that has a numerical value. Example in the
immediate mode:

ABS(X)

INT(T)

SCGN(X)

RND(X)

SQR(X)

BEXP(X)

LOG(X)

COs(X)
TAN(X)
ATN(X)

FRE(X)

? EXP(NOT 1.1) get 0.135735

Yielkds the absobugte T X . Doer X=2,-0, =21% ‘Peturns
2, 0, 2 respectively.

Truncates decimal number to an integer. For I=1.1, 0, -1.2
it gives 1, 0, -2 respectively.

Gives the sign of X. For X=0, there is no sign. For X=
2, 0, -2 it gives 1, 0, -1 respectively.

This is a pseudorandom number generator. If the argument is
zero it gives the same number as the previous call gave. ITf
the argument is negative, 1t alters the generator in a way
that makes the numbers unpredictible, but not evenly spaced
between zero and one. In ordinary use, the argument is a
positive number (it doesn't matter which one) and a pseudo-
random number between O and 1 is returned. The generator
has a period of 1861. That is, only 1861 separate "random"
numbers are produced and then further calls repeat this
sequence in the same order. A generator with a longer
period is presented after the section on NEWSLETTERS.

Square root, for positive arguments only. Example:
PRINT SQR(1000090) get 1000.05

Exponential eX Where e=2.71828

Natural log. You can obtain the log to base 10 by using
LOG(X)/LOG%lO). The argument X must be positive.

Sine of X where X is in radians. The conversion that 180°

is pl radians is needed to work problems where the angles are
expressed in degrees. These trig functions seem accurate

to within the number of digits shown on the screen.

The cosine, tangent and arctangent are likewise defined for
arguments in radians.

This function returns the number of bytes in RAM (that have
been allocated to BASIC at coldstart time) that have not
yet been used to store source code, variable tables, or
strings in high memory. Example for a 4K machine whose
memory was set to 1032 at cold start time:

18 PRINT FRE(8) SEN
2@ A%="A":PRINT FRE(B? .
3P AS=A$+AS: PRINT FRE(E: Eég

284

f

The value of the argument doesn't matter for this function.
I use 8 because it is near the () keys. In the above
example, the first FRE printing gives the bytes free after
the source program is stored. The second shows that a
variable has been entered in the variable table, taking

6 bytes. The third allows for the string "AA", 2 bytes
long, stored at $03FD and O3FE. When FRE is called, it
performs a "garbage compaction" of the strings stored

in high memory, discarding the no longer used strings and
compacting the rest into highest memory. This may give

a problem if string arrays are present. BUGS AND FIXES
discudses this problem.

TAB(X) Discussed at the PRINT command.
SPC(X) Likewise
POS(X) Intended for use with terminals. It gives the current
location of the cursor on the TV screen. In this example
the cursor starts at 0. The string " 0 " is printed.
The cursor is then at 8. The string " 8 " is then
printed in positions 8, 9, 10.
18 PRINT "8123456789" ’
28 PRINT POS(X) SPC(5) POS(X)
oK
RUN
8123456789
USR(X) See the separate discussion of the use of this function that
allows one to interface machine language subroutines to
BASIC programs.
PEEK(X) Used to return the numerical value (decimal) stored in a
given memory address. See commands after POKE...
WAIT I,J,K Used to interogate a memory location, especially an
input or output port flag register. The memory location I
(decimal) is exclusive OR'ed with K and then ANDed with J.
This is repeated until a non-zero result is obtained, wupon
which the execution of the next statement is begun. While
WAITing, the machine is immune to being stopped with the
(CTRL/C) command. Examples of use are given under TAPES.
DIM(X,Y,...) Used to assign dimensions to the indices of an array.
See the discussion under ARRAYS. Its most familiar use 1is
with constant arguments at the beginning of a program:
10 DIM U1(16)
but it can be used with variable array sizes:
: 10 INPUT N, I
S 20 DIM ER(2#%*N+1,I),L(I)

il

22

USR(X) FUNCTION
MACHINE LANGUAGE SUBROUTINES IN BASIC

You may need a machine language subroutine which can be entered
from BASIC, do its stuff, and then return control to the BASIC
program. This is done with the USR function. If desired, the
argument X of USR(X) can take a two's complement 16 bit number to
the subroutine. Also, two bytes can be returned to BASIC as
the value of USR(X). Each of these transfers is a little involved,
so first we will demonstrate the simplest case, where the subroutlne
is called, but no numbers are passed either way. Write a BASIC
program:

2 R=USR(S)
58 STOP

Now (BREAK) and hit M to enter the monitor, and place these numbers
at the addresses shown:

address code

$000B $22

000C 02
0222 60 $60 is op code for RTS

The address $0222 contained in the two bytes at $0B,0C is the
starting address of our program. It is stored "backwards", $22$02,
as is usual for 6502 machine language addresses. Actually, our
program is extremely short, consisting of only one instruction,

RTS, which means "return from subroutine". Now do a (BREAK),W

for a warm start of BASIC, and RUN. If all is well you will hit the
STOP in line 50 and see BREAK IN 50 on the screen.

It is awkward to have to put the addresses in $0B,0C so we add:
2 POKE 11,34:POKE 12,2
to the BASIC program. Of course, one must make the hex to decimal
conversion $22=34 and $02=2 in order to be able to write this line.
It is also commonly done to poke the machine language program in
from DATA statements. See the BASIC TRACE for an example of this.

The next more complicated situation is to pass a value S to
the machine language program. Add to the BASIC program:

5 INPUT “35Y:S
4O PRINT TAB(15) "R="R,"S="S
99 GOTO 5
(BREAK),M to the monitor and enter code starting at $0222:

$0222 20 40 02 JSR

A5 AE LDA FACHI
8D 20 D2 STA left byte on the screen
A5 AF LDA FACLO
2D 22 D2 STA right byte
0

0240 6C 06 00 JMP indirect

23

The address $06 in page zero is called a pointer. That means the
contents of $06,07 is a two byte address, in this case $AEO5. This
address is the entry point to the subroutine INVAR which takes S and
converts it to a 16 bit two's complement number and puts it in
$AE,AF, high byte first.

Our subroutine must pick it up from there for use. In this
case we poke it onto the screen as two graphics symbols, one for
each byte. To see all this action, (BREAK),W for a warm start and
RUN. Notice that the value of S in BASIC is unchanged by all this,
and R has some peculiar value. The business with the JMP indirect
was to allow use of the pointer but not force a premature return
to the BASIC program.

The last step in learning to use USR is to write a machine
language subroutine that will return 2 bytes to BASIC. It must
put them into the Y register and the accumulator, Y being the
low byte of the 16 bit number. Then a routine called OUTVAR entered
at $AFC1 pointed to by $08 takes these bytes and sends them on to
the BASIC program. Add to the previous BASIC program:

EUTNPIT YA ,Y 894 ,Y,5

8 Q=3%256

9 POKE Q-2,A:POKE Q-1,Y

4@ PRINT TAB(15) "A,Y>R="R,"S"S

(BREAK),M to the monitor and add to our previous program:

$022F' AC FF O 1IDY ¥
AD FE 02 1LDA A
6C 08 00 JMP indirect

(BREAK) ,,W and RUN. The variable R is now formed from the 16 bit
two's complement number. R is of course a floating point number.
Play around with the program. When the value of A is made higher
than 127, the value of R will be negative. Of course, both A and
Y must be in the range 0 to 255.

1 REM ##% USR(X) DEFMONSTEATOR #%%

2 POKE 11,34:POKE1Z2,2

5 INPUT "H,Y.5"i1RH,Y,5

H Q=3%256

S POKE Q-2,R:POKE Q-1i,Y

28 R=USR(S5?

48 PRINT TABI{15) "A,Y>*R="R, "S="5 _

42 REM A=HI,Y=LO BYTE OF R AS A 16 BIT THWO' S COHPLENENT'NUﬁBEH
58 PRINT

39 GOT0C 5

2L

ARRAYS

Numerical arrays and string arrays are similar in all respects
except for the value stored in the 4 bytes of each element. The
value for a numerical variable is a 4 byte floating point number.
The "value" for a string variable is the string length (given in 1
byte) and the address of its first byte (given in 2 bytes). The
fourth byte is always zero. If the string was given as a constant
in the source code, then that is its storage place. Otherwise, it
is stored in string memory at the end of RAM.

Arrays can have from 1 to 11 indices. While only integer
indices make sense, the interpreter will accept non-integers, by
truncating them. A(I,J,K) has 3 indices, and XZ(R)has one. The
indices take on values zero through a maximum given by a DIM statement.
DIM A(2) sets up an entry in the variable table for A with 3 elements
A(0), A(1), and A(2). If no dimension statement is encountered
before an array is used, the dimension of each index defaults to 10
(so the index is allowed to take on the 11 values 0 through 10).
The maximum size any index can be assigned in a DIM statement is
32767, but with 4 bytes per element (plus overhead bytes), obviously
real arrays must be much smaller than this. An array can be dimensioned
only once, either by a DIM statement or a default. Space in the
variable table is assigned to the array at the time of dimensioning,
and all elements are set to zero. Any number of arrays, DIM statements
and arrays per DIM statement can be used.

The total space an array occuples in the variable table 1s shown
by considering DIM A(5,6,7):

3 overhead (name and number of indices)

259 2 bytes for each index (to give its maximum size)
6x7x8 number of elements in the array

x4 L bytes per element

Then the total Size in the table is 3+2x3+(6x7x8)x4=1353 bytes.

A1l arrays are stored after all single variables in the tables.
Arrays are stored in the order they are first encountered (in a DIM
statement or by use) in the program, regardless whether they may

be string or numerical arrays.

25
BUGS AND FIXES

There are 2 bugs. The first may occur on a warm start.
Because the stack is not initialized on a warm start, an OM ERROR
may occur. To avoid this I have made a habit of hitting some key,
usually P, and (RETURN), after every warm start, and accepting
the error, to clear the decks.

The other bug is more serious, but only occurs in programs
that have string arrays. It is called the "garbage collector"
bug. The garbage collector is a routine at $B147 that is called
under 2 conditions. It is always called by FRE(8). It is also
called when memory fills up because the variable table growing upward
in memory and the string storage growing downward from high memory
have collided. Usually string memory contains a lot of abandoned
strings, "garbage", so by discarding the now unused strings, some
memory will be freed and the program can continue. An example of
how string garbage forms is given by this program:

10 A$="D"

20 FOR I=1 TO 100:B$=B$+A$: NEXT
30 B$="X":G0OTO 20

Each time B3 is redefined in line 20, the new B$ is stored

in high string memory, without erasing the previously defined B$!

The bug has a simple origin. In the garbage collector routine,
there is a "3" which should be a "4". Remember that the "value" of
a string array is stored in 4 bytes, but only 3 are actually used.
MICROSOFT must have changed its mind part way through development
of the interpreter, and forgot to change the garbage collector.

They have, of course, long since corrected the error and notified
their customers, but OSI had already masked its ROM's and it was too
late.

There are two fixes that can be tried, both published in
PEEK(65) V.1, no.3. The easiest fix comes from Mark Minasi.
Simply pick the dimension of each string array to be 3¥*(any integer)+2
This often works and is usually no hardship because there will be
such a number near any desired array size. The other fix is complete,
and was given by Stan Murphy. It consists of changing the 3 to a 4,
but requires moving the whole garbage collector routine to RAM. The
following program does this. It takes up 261 bytes of RAM. (You

need not reserve this at cold start time. The pointer to the end

26

of BASIC memory is automatically adjusted.) The garbage collector
is called by the statement X=USR(X), and must be called often

enough to prevent the "real" flawed garbage routine from being
automatically called into action.

1 REM #%% GARBAGE COLLECTOR #%%

2 REM

188 REM #%% DRIVER #%%

181 REM

1897 PRINT FRE(8)

1848 GOSUB 9Bea

188 GOSUB 9858

115 PRINT FRE(S):REM L% HASN T BEEN DEFINED YET

116 GOSUB 9BEH

128 GOSUB 58@

125 GOSUB 9BEH

126 PRINT FRE(8):REM HANGS BECAUSE OF L% FROM LINE 528

138 END

588 REM ##% GARBAGE MAKER #%%

SU2 REM

S84 REM By Stan Murphy

SBE REM '

518 INPUT Q,K:REM TRY 28,26

528 DIM L$(Q)

538 FOR I=1 TO Q

548 FOR J=1 TO K: L$(I)=L$(I)+CHR$(E4+])

558 HEXT J
- 855 X=USR(X)

S57@ PRINT LSCI), I:NEXT I

. 599 RETURN

1998 REM ,
i 98P@ REM *#% GARBAGE COLLECTOR %%
..5881 REM

1 U882 REM By Robert Badger, PEEK(E5) V.1, no.8, p.z@a

98983 REM after Stan Murphy,PEEK(BS5) U.1, no.3, p.4

9885 REM

4886 REM MNote: Uses up 261 bytes EACH time it is called!

9888 REM ;

9818 L=PEEK(134)*%Z256+PEEK(133)-262: GH=INT(L-256): GL=L -2Z56%GH

9815 POKE 11,GL:POKE 133,6L:POKE 12,GH:POKE 134,GH

9828 FOR I=BTOZE1l:M=PEEK{ I+45383):POKE I+L,M:NEXT I

9825 POKE L4B67,4:POKE L+216,2:POKE L+217,24:FOR I=1TOS:REAL /D, M:M=M+L

9838 AD=AD+L:POKE AD,INT(M/256):POKE AD-1,M-INT(M-/2561%256: NEXT 1

9835 DATA 59, 148,34,146,84,203, 137,146,261, 4

48468 PRINT °“GARBAGE COLLECTOR LOCATED AT "L"GH"GH"GL*GL

49845 RETURN

9858 DEF FNF(I)=PEEK(129)-PEEK(127 }+(PEEK(138)-PEEK(128) %256

9851 RETURN:REM THIS INITIALIZES THE "FRE" FUNCTICN

9360

PRINT FHF{(I>*"BYTES FREE":RETURN:REM "FRE" FUNCTION

e =

27

SPEED, SPACE, AND CLARITY

As your programming skills grow and you tackle more demanding
tasks, you begin to encounter failures of three types: the program
runs too slowly, takes up too much memory or becomes so complex and
unwieldly that you lose comprehension of what you have done. Here
is a unified scheme to tackle all these problems at once, making
an optimum compromise between the conflicting requirements of
clarity on one hand and space on the other.

First speed, since it is the key to the whole scheme. The
central results of the timing tests I published in kilobaud MICRO-
COMPUTING (November 1980, p. 128) are clear. The two procedures
most responsible for the slow running of unsophisticated BASIC
programsg are:

1) Conversion of decimal constants to floating point binary
numbers.
2) Searching for the target lines of GOTO's, GOSUB's, etc.

Either of these procedures can be very costly if repeatedly
performed in loops, especially in the intermost loops of a nested
set of loops.

Converting decimal constants to floating point binary numbers
takes about 1.1 ms per digit. Note the difference in the running
times of these two (crude% screen clear programs:

14 FOR I=@ to 2847 5 Q=53248:B=65

2@ POKE 53248+1,65 18 FORA=QTOQ+2@47:POKEA, B: NEXT
30 NEXT

25 seconds 8 seconds running time

(Actually, they fill the screen with the letter "A".)

The cure is to assign variable names to all long constants
during the initialization phase of the program. E.g. KYBD=57088.
In extreme cases, even one digit constants should be declared as
variables, e.g. Ng=g, Ni=1, ... N9=9.

The target line numbers in GOTO and GOSUB statements must be
converted to 16 bit integers at each encounter, so it takes a
little longer (0.2 ms /digit) to process GOTO 25@@@ than GOTO 5.
This is one reason to put "popular" subroutines at low program
line numbers. The other reason is more important. A search for a
line starts at the beginning of source code and requires 0.85 ms
per line inspected. Lines numbered 2 to 9 would be best, if the
routines are short enough.

It then follows that initializing procedures (done once at
the beginning of a program run) should be located in statements at
high line numbers, since they are executed only once. This leaves
middle memory for the "main loop" of the program, the one where the
main logic is blocked out and which makes frequent calls to the
"popular" subroutines at low line numbers and infrequent calls to
subroutines at high line numbers.

So much for speed, now clarity. The initialization code
should contain many REM's, should explain variable names, and should

28

give an outline of the operation of the program. It also helps
clarify things if all the programs you write have a similar format.
Start all new logical sections on "even hundreds" line numbers

and always start the main loop at 100 and the initialization at

1000. These numbers may sound a little low to those of you used

to renumbering each program with an interval of 10 between lines,

no matter how large the numbers may get. But remember the conversion
time required to process target line numbers! Small line numbers

are best and so I space my lines 2 to 5 numbers apart.

A1l this suggests a standard format, given below. The format
adds to clarity and ease of writing by including (at standard line
numbers and with standard variable names) those utilities that are
used again and again, such as rapid screen clear, keyboard POKE
and screen corner addresses, score writing subroutines, etc. I
put utilities in lines 9000to 9999, and tape the whole format.
Then when starting to write a new program, I just read in the
format, and begin to add code (and drop unwanted lines of the format).

DEBUGGING AND UTILITIES

Effort spent in learning to use the available facilities and
in developing some utilities will enable you to perform your
debugging chores efficiently. The resources are divided into
three classes.

Editor: While RUNning your program, it may stop because you hit

(CTRL/C), or the program reached a STOP, END, or ERROR IN...

Then you are back in the immediate mode, wondering what happened.
Take your time and think it through. To clarify things, you can
print out variable values singly, or with one line programs (no
line number!) to display arrays. You can alter variable values
with these one liners, and do any variety of LISTings. You can
poke around and think as much as is necessary, just so long as you
do not add, delete or change any numbered lines (which would
destroy the variable table. When all is set, you can use CONT

to continue the program from where it stopped, or use GOTO

or GOSUB ... to start elsewhere, and still preserve the variable table
created by the running of the program up to the present moment.
However, if you alter, add or delete any lines, your only choice is
to start again from the beginning.

Insertions:While building a program, you may insert STOP or PRINT...
statements to help pinpoint program malfunctioning. You may also
want to insert some FOR I=1 TO 5@@@:NEXT delay loops to slow

down the program for better observation of its functioning. After
the trouble is fixed, you remove these diagnostic tools.

Utilities: A package of short BASIC programs can be put into high
line numbers and used during program construction and debugging.
They need not be included in the tape of the final product. Some
useful ones are:

Hex to d=2cimal

Decimal to hex

Line renumber

Tape view

Screen dump (if you have a printer)

Branch locator
Variable cross reference table generator

The most useful renumber program will allow you to renumber one
or a few lines without changing the rest of the program. Tape view
ig useful to display another BASIC program on the screen so you
can see what you did, without overwriting your current program in
memory. Branch locator is useful to pinpoint those lines targeted
by GOTO's and GOSUB's. Also it helps unravel the structure of
foreign programs that swim into your possession. Likewlse, a
Variable Cross Reference table pinpoints variable usage and variable
mispelling and is necessary if you are going to condense code by
reusing variable names in a long program.

PROGRAM FORMAT AND UTILITY PROGRAMS

=OGRAM HAME %%
i ztanding BEM = inn | ines
M TO 539,
t REM
5 REM "Pepular®™ subroutines in | ines Z2-95.
HEF

el REM MARIM LOOP IN LINES 1B o 239
WERE

Lo el ¥ SN S R S

AGl REM %% PROGRAPM NAME #%%
¥ REM

1883 REM Edward H. Carlison
1884 REM 2B7Z Raleigh Dr.
1885 REM Okemos M1 48864
1888 REM (517) 349-1219
188y REM

1168 KB=57888: R KEYBOARRD

1185 SC=53248:REM SCREEN CORNER

8389 G070 1.

SuBd REM

SuEdl REM #%% MENU #=2s

Hylds REM

SUEY FRINT:PRINT:FPRINT:PRINT

SP8gS PRINT "S@ge MENU®

Uiy PREINT *8518¢8 RAFPID SCREEN CLERR®
avlz PEINT "3288 PRINT AT"

815 PRINT "S31 DECIMAL TO HEX"®

Suz@ PRINT 8418 HEX TO DECIMAL”

8838 PRINT "9588 ERROR CODE FIX®

SPA3% PRINT 8688 SCREEM DUMP*™

SA3Y PRINT "Sy@gB BELL™

Haz3g PRINT "S3888 RANDOM NUMBER GENERATOR
J248 PRINT "3S308 LINE RENUMBER®

Husye PRINT "tilodl CROSS REFERENCE GEMERATOR®
dJubs PRINT "cZ2888 BRANCH LOCATOR™

988 PRINT:PRINT:PRINT:STOP

=9

Sk
H161
5 6 4% g
H9183
Hi@4
49118
S112
S114
41,19
Szv@
3281
SzZ2u2
4203
S284
HzZig
az88
53681
U382
9364
9218

gu312
83314
S4808
4401
39482
9485
84168
8415
442a@a
U425
9430
=115 15
g5@1
582
4564
9585
35686
3526
9539
9548
3558
9568
8578
9588
4588
9592
a594
83688
4681
3682
96E3
St84
aB8S

HE

REM %% REFLD SUREEN Tt #

REM

KEM from xileckaud Rl ING zoamewhere

REM

AA=PEEEY 129 0 BB=PEEK{ 138 11 POKE 124, 2581 FORE 188, 21%
O%E="

FOR I=1 T0O 35:0E=DLE+ " iNEXT:POKE 129, RF:POKE 138, BE:RETUEN
PRINT 2@y MEpu-

REM

REM ¥k PRIMT AT S%%

REM

REM Roger Liszen, fAardvark Catalog

REM

FORY=1TOLEMH DI$ 1 POKEDHY , ASCOMILS(DE ., v. 1 1)i MEXTY s RETURN
REM

REM #%% DECIMAL TO HEX #%%

REM

INPUT “DECIMAL NUMBER " ;M:GOSUE GUTO Q3w

G#="081234567E83RBCUEF " : 1F

D$="
N=N-
REM
RE
REM

INPUT"HEX 4 DIGIT

Q518:PRINT D$:G
=

N>BES35 THEN FRINT"ERROR®

=
o

":F=4@96:FOR I=1 10 4:N1=INTI{N/F)
N1#F : US=D$+MIDS(GS, N1+1, 1) F=F /16 NEXT

1 RETURN
#%% HEX TO DECIMAL #*#%

NUMBER" ; D®: G0SUE S941@:PRINT DE:GOTO 3488

N=8:L=4836:FORI=1T04
M=ASC(MIDE(D%,1,132-48

IFM>STHEN M=M-7
N=N+MsL:L=L 716 NEXT: DE=5TR& (N
RETURN

REM .

REM ##% ERROR MESSAGE CORRECTOR #4%
REM

REM E.0. Morris Jr. and Tim Finkbeiner
REM MICRO Mow. 1388, p. 3@:37
REM

BATA 72,173

oATA 64,215:REM SUPERBCARD 181,211
DATA 281,E83,286,8, 173

DATA B66,215:REM SUPERBCOARD 183,211
DATA 41,127,141

DATAR B6,Z15:REM SUFERBOARRD 183,211
LATA 184,76,195,168.8,8

FORX=G7E TO 57

RERD G:FPOKE X,G:MEXT

POKE 4,.B4:POKE 5,2:ENO

REM

REM #%% SCREEN DUMP #*%&

REM

REM USEFUL 1IF YOU HEVE R PRINICRE, BUT WILL DEPEND

REM ON

REM

YOUR PARTICULAR MACHINE.

-~

47E8 REM

vl REM #%% BELL #4%

HTPEZ REM -

S7EY REM I have added @ speaker to my CZ2-4F. —o o S
Y7ES FOR I=6 70 2BR:POKE AC,8:POKE AC,ZEL:MEXT L:RETURH

HS7HE POKE AC,B:POKE AC,2558
4yl NEXT I:eND

9988 REM

4581 REM #%% LINE REMUMBER #%%
Sofs REM

991 INPUTYFROM ... TOP3MNF,NT

Y915 NH=INT(NT /256): NL=NT-NH%256 o
9928 FOR I=TEOTO48BEG: B=PEEKCI):IF B{>® THEN NEXT I
9925 N=PEEK(I+3)+PEEK(I+4 J%256

9926 PRIMTCHR®(13)M; . .

§93@ IF N=NF THEN POKE I+3,NL:POKE 1+4,HH:END

948 IF N>3959 THEN END

4845 T=i+4:MHEXT 1

TAPES, BASIC AND HOMEMADE

Ever wonder what is on the tapes of your programs that you
have SAVED? It is not what is in memory, exactly! It is more
like what is on the screen as you LIST. Suppose your source
program were:

1 AAAAA
2 BBBBB

Of course this program won't run, but its code is in memory.
Suppose that you do a NULL 2 in the immediate mode and then
a SAVE, LIST to put the program on tape. The code on tape is
ASCII (no tokens) which we here represent in decimal numbers.

1% 0 90 0 0 € 0 O O @ @10 O W©
13 ¢ 0 0 0 06 0 0 0 0 010 © @ 32 hg 32 65 65 65 65 65
i3 ¢ 0 ¢ 00 0 © 90 010 9 0 32503266066 66 65 66
13-4 - 0O -0-0 O 0O @ 0 2
where 10 is line feed

32 space

i} return (or carriage return CR)

9 1

50 2

65 A

66 B

The two nulls after the 10 (line feed) are the work of the NULL
command. Default is zero nulls. Each line begins with a CR
and ten nulls (see support ROM at $FF7B) followed by a line feed

and the text. An empty line 1is sent before the BASIC program code

stEr+s,

31

The OSI system differs from some others in that you can add a
program to one already in the machine by roading it in from tape. o
Of course no line numbers can be the same in the two programs, or
more exactly, all the line numbers of one must be above all the
line numbers of the other, so that the flow of execution cannot
get mixed between them.

The tape port address of a C2 or CA4P is at $FCEP=64512, and
for a C1 or superboard II is at $FF@F=61440. You might want to read
your BASIC tapes with a program like this:

1 Q=64512:R=Q+1
b WAIT Q,1
5 PRINT PEEK(R):GOTO 4

But this program WON'T WORK for reading BASIC because the PRINT is
too slow and so you will skip some bytes. This program will work
for reading your own tapes if you space the bytes out a little
when making the tape, more later.

You can read a BASIC tape by storing the bytes in an array:

I
IATT §,1
(I)=PEEK(R):I=I+1:GOTO 4

When you get an error break because you tried to f£ill D(201),
you can enter this line in immediate mode to see the output.

FOR I=1 TO 2@@:PRINT D(I);:NEXT

The problem here is that the first part of D may be filled with
noise characters from the "blank" tape. You may have trouble deciding
where the taped program starts.

If you want to store some data generated by a program onto tape, you
can go two routes. If the amount of data 1s relatively little, so
that time to tape and read is not important, then you may use
the functions already in BASIC, such as PRINT, INPUT, SAVE, and
LOAD. Here is a program to illustrate that.

18 REM #%% PROGRAM TO GENERATE DATA AND SAVE IT #+%
15 REM

28 DIM Y(2B):FOR I=1 TO 28:Y(I1)=T:NEXT

38 SAVE:FORI=1 TO S:PRINT @:NEXT:PRINT 255:REM LEADER
4@ FOR I=1 TO 2@:PRINT Y(I):NEXT

6@ LOAD:REM TO EXIT FROM SAVE

65 PRINT "HIT (SPACE BAR) TO UNLOCK KEYBOARD®

78 END

LUEE REM %% PROGRAM TO READ TAPE %% 33
i6@1 REM

1BEE DIM Y(28)1:L0AD

1818 INPUT X:IF X<>B THEN 181@

1828 INPUT X:IF X=¢1 THEN 1828

1838 FOR I=1 TO 2@:INPUT Y(I):NEXT

t¥4@ PRINT "HIT SPACE BAR TO CONTINUE®

1858 FOR I=1 TO 2@:PRINT Y(IJ)::NEXT

4999 END

And here 1s a program to read the data generated. Both programs
can be in the machine at once. To write to tape do RUN. To read
from tape do RUN 1@8@@. Line 30 puts a leader on the tape that is
recognized by lines 1f1f and 1@2@. Lines 6@ and 1@4@ allow one to
get out of the LOAD mode. The LOAD in line 60 is to get out of the
SAVE mode.

A faster way to store data from an array to tape is to use this
program.

DIM D(244)

GOSUB 1@@:REM TO PUT YOUR STUFF IN D
Q=64512:R=Q+1 ‘

FOR I=1 TO 2@@:WAIT Q,2

POKE R,D(I)

PRINT D(I):REM TO SLOW THINGS DOWN
NEXT

~J o\ o -

The resulting tape can be used with the first program we gave in
this section. Without line 6 it runs at full speed and can be
read by the second program in this section. Finally, this faster
way to read and write tape will probably need to use the "leader"
method that we used on the previous program.

AUTOLOAD TAPE

Machine language tapes fromOSI use the autoload format. Each
byte to be sent 1s broken down into the two ASCII characters that
represent it in hexadecimal notation. For example if %1111@@11
is the form stored, it is sent as 2 bytes F and 3, in ASCII as
$46 and $33. Thus 1 byte in memory is recorded as 3 bytes on tape.
This method is designed to use the monitor for tape in a way that
mimics the keyboard, and allows the tape itself to switch to the
keyboard mode, at the end of the loading process, so that an auto-
start feature is possible.

The characters to be found on the tape are the 16 hexadecimal
digits @ to F, and

‘ $2E
(RETURN) @D
2F

G L7

which are familiar to you by your use of the monitor.

The tape format also includes the starting address of the code
to be taped (or to be loaded) and the starting address of the code
to be executed. This can be the program just loaded or some other

34

program, or the warm start of BASIC (@g@@) or the monitor (FEZZ).

The G for "go" 1s optional. Representing the 2 bytes by H and L

(for high nybble and low nybble) and (RETURN) by R, the whole tape N
format is as follows:

JHI. HL. / HLR HLR HLR ... HLE.HL HL G

The left HL HL is the starting address, MSB (most significant byte)
byte first. The right most HL HL is the address at which the monitor
will start execution, if G is found on the tape (or entered from the
keyboard). This format is exactly the same that you would use from
the keyboard to enter and run a program.

The monitor in the OST machines can read tape in the above
format, but cannot write tapes. To write such tapes, use a program
like the one below, which assumes your machine language code 1is
in memory from $0222 to O2FF.

REM WRITE MACHINE LANGUARGE TAFES IN O8I FORMAT

REM E. H. CARLSON

REM 3872 RALEIGH LR.

REM OKEMOS MI 4864

REM COMPUTE Issue 3, March-April 1988, p.1il1S

N=221:M=3%N+15

Q=64512: R=0+1

REM ACIA AT 6451i2=%rCOC 1IN 5SB8 BOARD MACHINES

REM USE 61448=%FB88 FOR 68@ BOARD MACHINES

18 INPUT "START TAPE AND WAIT FOR LEARDER, THEN INPUT G ";:A%
188 DATA 46,48,58,58,58,47:REM 8222~

165 DATA 46,78,638,48,48,71:REM .FEBBG

116 FOR I=1 TO B:READ C:WARIT Q,2:POKE R,C:PRINT CHR®B(CI; :MNEXT
116 S=546:E=5+N

119 REM FOR I=88222 T0 $62FF

128 fOR I=5 T0 E

125 C=PEEK(I):H=C AND 248:L=C AND 15

136 H=H-16+48:1IF H>SY THEN H=H+7

135 L=L+48:IF L>57Y THEN L=L+7

136 WAIT ,2:POKE R.H

137 WAIT Q,2:FPOKE R,L

138 WAIT Q,2:POKE R, 13

145 PRINT CHR&(HY; CHR®(L); ™ °;

158 MNEXT 1

155 FOR 1I=1 TO B:READ C:WAIT O,2:POKE R,C:PRINT CHR&UCI; tNEXKT
168 REM FORMAT FOR TRPES 15:

165 REM .HLHL/HLRHLR.. . HLR.HLHLG

178 REM WHERE THE HLHL AT THE STArRT IS THE STARTING ADDRESS,
175 REM HI BYTE FIRST, THE HLHL AT THE END IS THE EXECUTE

188 REM ADDRESS AND THE HLR'S IN THE MIDDBLE ARE THE TEXT

185 REM BYTES, THE R BEIMG A CARRIAGE RETURN -
1898 REM THE . ~ G RRE THE SAME AS THE COMMANDS 1IN THE MONITOR
2uE REM THE H AN THE L ARE ASCII CODE FOR THE HEX DIGITE

285 REM B8 THROUGH F.

Lo ~mn s W e

e

1 GCTO EZeulrRel =% HREPHOH LOLRTOR %%%

1w

14y
142
89S

A
i

SEM
M w%w TEST PROGRAM #%%
REM

S0T0 =8

GOSUE 518

UM B GOTO 82,626

CH A GOSUB 541,556

IF A THEN BE@

IF A S0To 57

IF A THEN GUSUB SB@

IF A THEN B=1

REM LOCATOR FINDS “THEN' BUT PRINTS NO ADORESS
IF A THEN GOTC 559

T T DI

» REM GOTO @

REM GOSUEB ©

REM IF A THEN Q70 B

IF A THEN S0SUB 6BB: GUSUE B1e:G6GOTO B2
STOP

U/an RETUREN:MY MACHINE HAS A BELL PROGRAM HERE

26868 KEM

EZ28a61 REM %% BRANCH LOCATOR ##%%

cegBZ REM

E2818 PRINT::PRINT:FPRINT "BRANCHES: ":PRINT:PRINT

B2BZW A=77Z:L=8:FO0R I=1 TO 9999:REM START HERE FOR NEW LINE
2835 L=PEEK{A-1J+PEEK(R)I*256: PRINT CHR%$(13) L;

E2B36 IF L>8998 THEN GOSUB 37d@B:END

52048 FOR J=1 TO 8999:A=A+1:B=PEEK(AJI:REM NEW STATEMENT
E2858 IF B=136 OR B=138 OR B=148 0OR EBE=144 THEN &21886

2805

5 FOR K=1 TO 255:REM LOOK FOR STATEMENT OR LINE END

EZBEB A=A+1:B=PEEK(AJ:IF B=B THEN A=A+4:PL=B:NEXT I
62865 IF B=58 THEN PL=1:NEXT J

5278 NEXT K:STOP

EZ188 FOR K=1 TO 73:B=FPEEK(A)

62118 IF B=136 THEN D$="GOTO *:160TO 62143
E2iz8@ 1F B=148 THEN D$="GOSUB ":GOTO 62143
62138 IF B=168 THEN D%="THEN *:TH=-1:6G0TO 62143

52141 A=A+1:NEXT K:STOP

52143 IF PL=1 THEN PL=8:PRINT CHR$(13) L;

52144 PRINT TARB(7Y);D$; .
52145 A=A+1:B=PEEK(A):IF B=32 THEN PRINT "";:60T0 62145

62147 IF TH THEN 62280:REM LOOK FOR COMPLICATED *THEN® LINES -

EZ15@ IF B=44 OR (B>46 AND B<58) THEN PRINT CHRS$(B);:GOTO 62145
B2152 PRINT °°© ;

652155 IF B=8@ THEN A=A+4:PL=@:NEXT I ‘ £

52168 IF B=58 THEN PL=1:NEXT J

52165 GOTO B2855 : Lo
62208 TH=8:IF B=136 OR B=138 OR B=14@ THEN 62116 . . .
82218 GOTO 62158 ¥

OK

J

N

1 A=1:

2 REM
3

FEM ##% TEST PRUSRAM 2=
"RUN E2BE8* TO COMPRLY THE LY @

11 C=3:0=4:FEM ARAARAR
4 EHND:

DON' T SEE THIS AFTER COMPARCT Lo

S RETURNM:NOR THIS
B GOTO 11111:MOR T

v Ag="

SEE THIS":REM MNOT THIS

899 STOF

Gz2aaa
62881
szuBz
BZA1E
62815
62026
B2825
62835
62836
BzZB46
62858
(=¥ad i a1%]
EZ2BE5
62868
B2B78
62873
B2B75
626808
62856
621684
682118
62128
62288
62218
BZZ215
62228
B2225
62388
62328
62325
62327
62334
6z448
624186
Bz2420
52438
62689
52681
62682
BE2684
62685
62687
62668
E2616
62611
BZ2B16
L2628

REM

REM #%% COMPACTOR *%%
REM

PRINT:FRINT:PRINT "COMPARCTI
OIM L(8B):AP=YES: AD=3%256-3
A=768:L=6B:FOR I=1 70 93%93:H/=H+4

IF L<>8B THEN GOUSUE GZ6ay
L=PEEK(A-1+PEEK(A }#256: RN=KG

IF L>389898 THEN POKE AP,B:POKE AP+1,6:END
A=A+1:B=PEEK(A2:IF (B=32))0R{E=EE) THEN 52848
A=A-1:FOR K=1 TO 255:A=A+1:B=PELEK(A)

IF B=8 THEN NEXT 1

IF B=142 THEN GOTO 62168

NG i PRIMNT:PRINT

IF B=SB THEN GOTO BZ2468
IF B<>32 THEN L{AN)=B:AN=AN+1

IF B=136 THEN GOTO 62284

IF B=34 THEN GOTC 52388

NEXT K:STOP

FOR K=1 TO 255:A=A+1:B=PEEK(A):REM LOOKING FOR LINE ERND
IF B=8 THEN NEXT I

NEXT K

FOR K=1 TO Z55:A=A+1:B=PEEK(A)I:REM FOUND *GOTO"
IF B=8 THEM MNEXT I

IF B=32 THEN A=A+1:B=FEEK(A):G0TOEZZ18

IF B=58 THEMN GOTC £2188

L{ANI=B: AN=AN+1:NEXT K

FOR K=1 TO 255:A=A+1:E=PEEK{AJ:REM FOUUND ™ CHAR.
IF B=34 THEN L(AN)I=B:AN=AN+1:G0T0O 62096

IF B=8B THEN MNEXT 1

IF B=58 THEN 62468

L{AN=B: AN=AN+1:NEXT K

A=A+1:B=PEEK(AI: IF (B=32)O0RIB=58) THEN G2488:REM FOUND
IF B=B THEN NEXT I

IF B=14Z THEN GOTUO G2Z1e@
L{AN)=58:L{ AN+1)=B: AN=AN+Z: GOTOG212R

PRINT L;:REM POKE MEMORY WITH COMPACTED LINE
AH=INT((A-3)/256): AL=(A-3) -256%AH

POKE AP,AL:POKE AP+1,AH:PRINT TAB(S: AL;AH:

IF AM=B THEN FRINT:RETURH
AH=INT(AP 258) : AL=AP - 256%AH

PRINT TAB(16) AL;AH;

POKE AD,AL:POKE AD+1, AH: AD=AP: AP=AP+2
AH=INT(L/256): AL=L-25E*AH

POKE AP,AL:AP=AP+1:POKE AP,RH:AP=AP+1

POKE AP, B:AP=AP+1:PRINT: RETURN

IF (B=128)0R(B=14330R(B=141) THEN L{AN=B:AN=AN+1:6070 GZ

;3

i

FOR I=8 TO AM-1:POKE AP,L{I3:FRINT CHR$(L(IDI) tAP=AP+1 i MNEXT

103

2R

<=

HOOKS INTO BASIC and BASIC TRACE

After you have been using your machine for a while, a case of
"whatifcitis" sets in. To overcome some of the minor annoyances or to
make some major extensions to BASIC, you must seek out the spots where
BASIC protrudes from its fortress in the ROM's. There are several
such places.

Of course, USR(X) is designed to be an exit from BASIC. But
there are others that lead even deeper into the fortress. BASIC
passes through the JMP in $0000 on its way to warm start at $A274.

If

Change the address in $01,02 and you can make "warm start" into anything
you wish! For example, write your own screen editor with true backspace

and middle-of-the-line editing. Or buy one in firmware or software
offered by the software houses. Other jump pointers in zero page are
the message printer at $04, INVAR at $06, and OUTVAR at $08. Super-
boards and C1 machines have a very useful set of hooks in page $02
for INPUT, OUTPUT, (CTRL/C), and LOAD FLAG.

There is one gigantic crack that extends to the very center of
fortress BASIC. The routine stored in page zero from $BC to $D3
gets characters from the BASIC source code lines and sends them on
to be processed by the rest of the interpreter. Every character of
every line of BASIC source code goes through this routine! I wrote
an article "PUT YOUR HOOKS INTO OSI BASIC" about it (MICRO, June 1980,
page 15). Dale Mayers has written a BASIC TRACE program by modifying
the page $00 routine and adding code in page $02. A version of this
program 1s given below.

18 REM *%% BASIC TRACE =**%

e WER For C1 and Superboard II
e o Fais Magors line 140 change 128 to 163
gt FoRL, B, Haslyinghton line 160 change 215 to 208
i; EEQ LERRing This changes the address

o N on the screen.
188 FORX=546T0G642: READD: POKEX, D: NEXT

185 FORX= 218 T0 238 :READD:POKEX, D:NEXT

1BE REM CODE STARTING AT #8222

187 DATAL3Z2,247,134,248,162,8,181,172

11@ DATAL148,248,232,224,5, 288,247, 165, 136, 166,135,133
128 DATAL173,134,174,134,239, 162, 144,56, 32,232, 183,32
138 DATAl1@,185,162,08,189,68,1,201,0,208,2,248 .

1468 DATAZ7, 157, ldé 215,232,224,6,288,233, 32,08, 253

158 DATAL1BZ,8, 181,246,149, 172,232,224,5, 288,247, 164 .

18 DATARZ247, 166, 248,96, 163,32, 157, 128{%!5 232,224,6"

178 DATAZES, 248,248, 225, 162, 176, 134, 206, 162, 13,&34 Aﬁ?
186 DATASE,32,2,2,2 it
208 REM CODE STARTING AT $BADA - £
218 DATAL33,238, 165, 135, 197,239, 248, 3, 32 34, 2 ras '
2z@ DATAZ3S,56,233, 48,56, 233, 288, 96, 32, 32,95, 21
225 REM LOADS CODE $B@, $A@ INTO ADDRESSES S@AGE
226 REM USING A SUBROUTINE THAT STARTS HT !@278
238 POKELl,118:POKE1Z, 2: X=USR(XJ
3@ REM RUN THIS PROGRAM. THEN "NEW" ﬁnﬂ»tﬂﬁ
31@ REM THE CURRENT LINE NUMBER. WILL APPEAR:E
315 REM BOTTOM OF THE SCREEN AS YOUR:FPROSRAM:RIMSY
32@ REM YOUR PROGRAM WILL RUN WHILE THE SPAC ”Baﬁ

325 REM HELD DOWN, STOP WHEN THE SPACE BAR IS REE

38

KEYBOARD AND SCREEN TRICKS

Good programs have optimum human-machine interfacing. Whether
you run a word processing, game, or business program, you quickly
become fatigued and annoyed if the keyboard requires unnecessary
pounding or the TV screen displays inappropriate stuff.

The PRINT and INPUT commands of BASIC, while easy to use,
promote idiotic repetitive and mechanical conversation. Humans
feel most at home if the computer mimics human conversation patterns..
For example, instructions at the start, menus, HELP if needed,
complete prompts for early use, and minimal prompts when familiarity
with the software system has been reached. All this takes some
extra effort by the programmer. Rather than pontificate on the
principles of good human-machine interfacing, I will just point
out some keyboard and screen techniques that are useful. With
them, you can obtain clean input and output if you give some thought
to the process and turn your annoyance detectors up high as you
try out your programs during their development.

Scroll free displays. The most primitive displays use a
succession of PRINT statements so that old material is scrolled upward.
Information entered does not stay where you put it, requiring you
to search upward on a cluttered screen to find the nuggets you
need. Perhaps the worst cases of "sgcrollitis" occur in those board
games where the whole board is rePRINTed after every move. The
resulting scrolling is visually equivalent to the nerve Jarring
racket of a stick rattling along a picket fence. The best way is to
create the board and subsequently update it with POKEs. Scores
and other text can be POKEd in with the "print at" subroutine given
in the section on FORMAT and UTILITIES.

We have this scroll free gem from the Aardvark Journal:

120 PRINT CHR$(13)"message";

The CHR$(13) and the semicolon at the end are the essential
elements of the trick. The message is printed at the usual

entry spot at the bottom of the screen. But the semicolon insures
that no scroll follows the message, and the CHR$(13) sends a CR
before the message so it starts at the left of the screen rather
than at the end of the previous screen output.

Invisible tagging of spaces. In programs, the screen display
itself can be data, deposited in screen memory by POKEs and retrieved
by PEEKs. There are 2 distinct characters, $20 and $90, that are
displayed as a "blank" on the screen. This fact allows some
unusual effects to be programmed. For example, in a "fox and
rabbit" game, the field may consist of type $20 blanks (plus trees,
houses, fences, rabbit, fox, etc.) and as the rabbit moves, he may
lay down a trail of type $90 blanks, invisible on the screen but
followed by the fox, sniffing with PEEKs and using IF... to recognize
the $90 scent.

Keyboard input. There are three ways to get input from the
keyboard, or rather, one hardware way that can be used directly
or accessed through 1 or 2 levels of software.

The hardware method uses the keyboard port at 57088. This
method differs depending on whether you have a C1 or a C2 (C4P)
machine. At any rate, it is described in the 0SI literature.

The only point I will make here is that the AND, OR, NOT functions
are very useful to detect if one key is depressed when others may
or may not also be depressed.

1 REM FOR A C2-4P

100 KB=57088

110 POKE 530,1:REM DISABLE (CTRL/C)

115 S$:n "

120 POKE KB, L4:REM 4=%00000100, activates R2

130 P=PEEK(KB)

140 IF(P AND 16)=16 THEN S$="B"

150 REM 16=%00010000, Ci4

160 PRINT P;S$

199 GOTO 115

200 REM Detects a B key depression, even if
other row R2 keys (XCVBNM,) are
depressed also.

On a C2 machine, the row and columns are designated by bits

being equal to 1. On a Cl1l machine, by bits belng zero. For example:

C2: R2=%00000100
Cl: R2=%11111011

So the NOT operator can be used to translate from variables suitable
for a C2 machine to those for a Cl. Software can be written that
works on either machine. Write the program for one (say a C2-4P) .
and have the program look at the byte in $FFE2 to see if the

39

machine being used is a C1. If so, do a NOT on the keyboard variables.

The next level of use of the keyboard from BASIC has USR(X) call

the keyboard routine at $FDOO0 directly. This routine goes into a
loop waiting for a key closure. Upon getting one, it stores the
character at address 531 and returns to BASIC.

From the 188 POKE 11,@;POKE 12,253
Aardvark Journal: 118 X=USR(X)
128 P=PEEK(531)
138 PRINT CHR$(P);
148 REM Or use P to make a string, etc.
199 GOTO 110

There are advantages to this input over using the INPUT command in
the handling of commas and quotation marks.

L0

INPUT: some problems and partial solutions. If you are
entering a string, the computer wusually interprets commas as
marking the end of the string. This is unacceptable in many applicationsm.
for example, in word processing programs. Example: ‘

18 INPUT S$

2f PRINT S$

RUN

? HERE, WE HAVE A COMMA.

?EXTRA IGNORED

HERE
A fix is to start the inputed string with a quotation mark.
Same program:

RUN
? "HERE, WE HAVE A COMMA.
HERE, WE HAVE A COMMA.

However, there is a price. The program now will take a second quote
as sufficient cause to be confused. Note the same program with
two more input sentences:

RUN
? THIS IS A " MNARK.
THIS IS A " MARK.

RUN
? "WE WANT BOTH A, AND A " IN THE SAME LINE.
REDO FROM START v

but
RUN
? THIS IS A " AND THIS IS ANOTHER ".
THIS IS A " AND THIS IS ANOTHER ".
but

RUN

? THIS IS A " AND, THIS IS ANOTHER ".
EXTRA IGONRED

THIS IS A " AND

All this makes strings a very poor way to do word processing.
More accurately, a poor way to input text. Once a string is
properly given a quotation mark, it treats it right from then on.
Example:

18 QP=CHR$(34)

20 S$="YOU CAN HAVE , AND " +Q$+"MARKS IN THE"
3@ PRINT S$

RUN

YOU CAN HAVE , AND "MARKS IN THE

TWO'S COMPLEMENT BINARY NUMBERS

To represent signed numbers, the left most bit is reserved to
be a sign bit (F for + and 1 for -). Then the best way to represent
negative numbers 1is in the two's complement form. Example:

L %0000000000000100
3 0000000000000011
e 0000000000000010
1 0000000000000001
0 0000000000000000
) W e T B B B A B
=8 1131113131923243130
-3 1171111111111 501
-4 11111171111111100

To get the negative of any number (+ or -) when in the two's
complement integer form, first invert each di%it (every 1 goes to
0 and O to 1). Then add 1 (with binary carry).

Example: 3 %0000000000000011
~3 1111111111111100+1=
131311111 139111001

-4 1117111111351 100
L 0000000000000011+1=
0000000000000100

FLOATING POINT NUMBERS

Single numerical variables require 6 bytes of table space,
2 for the name and 4 for the value. Numbers are stored in a
floating point binary representation. The first byte gives the
exponent. The next 3 bytes give the mantissa (fraction) and
sign. For example the number 3 is represented as

3 = %0011 in one binary nybble.
(The % preceding a number indicates it is in binary, $ indicates
it is in hexadecimal.) You can add as many binary zeros as you
wish to the left (just as in decimal numbers).

3 = %0000 0011 in one byte
Make it a fraction by moving the "radix point":

3 = %0.11 x 272 in analogy with

3= 0.3 x 1071

So the internal representation of 3 could look like this;

3 = $02 %1100 0000 $00 00 but doesn't, quite.
o —, = == e e TS
exponent 3 byte mantissa

We have neglected two details. We want to be able to express both
positive and negative exponents, so the byte representing the

exponent is biased by adding $80 to it. The exponent +2 is represented
by $82, zero by $80 and -2 by $7E.

Also, we want to represent the sign of the number, +3 and not
-3. We make use of the fact that the mantissa 1s chosen such that
its left most digit is always 1. So this digit is redundant and
we remove 1t and replace it with a sign digit, O for + and 1 for -.
The final result is:

3 = %11
is stored as 3 = $82 %0100 0000 $00 00 = $82 40 00 00
while -3 = $82 %1100 0000 $00 00 = $82 CO 00 00
and 1/3 = $7F %0010 1010 1010 1010 1010 1011
and -1/3 = $7F %1010 1010 1010 1010 1010 1011
finally: 0 = $00 00 00 00 as a convention

The largest integer that can be represented by this system
with no error is

224 1 = 2563-1 = 16,772,215
= %1111 1111 1111 1111 1111 1111
stored as $98 7F FF FF in the table.
shown as 1.6772E+07 on the screen.

Finally, what happens if you try to store an undefined value?
The 2 line program
1 A=B
2 PRINT A;B
RUN

run ok. The variable B, of course, is undefined in this program
and has no entry in the variable table. A is represented by

A = $00 00 A5 7D in the table.
This number 1s treated as being zero by the BASIC interpreter.
In fact, any floating point number whose exponent is $0C is
treated as zero. If the sign bit in the mantissa 1s set, the number

is treated an -#.

80
81
82
83
8L
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
L
95
96
a7
98
99
9A
9B
9C
9D
OE
OF
AO
A1l
A2

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

FOR
NEXT
DATA
INPUT
DIM
READ
LET
GOTO
RUN
IF
RESTORE
GOSUB
RETURN
REM
STOP
ON
NULL
WAIT
LOAD
SAVE
DEF
POKE
PRINT
CONT
LIST
CLEAR
NEW
TAB(
TO

FN
SPC(
THEN
NOT
STEP

A3
AL
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
ofo
C1
cz2
C3

TOKENS

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

+

*

/

(power)
AND
OR

SGN
INT
ABS
USR
FRE
POS
SQR
RND
LOG
EXP
cos
SIN
TAN
ATN
PEEK
LEN
STR$
VAL
ASC
CHR$
LEFT$
RIGHTS$
MID$

43

Li

A
The source code memory is rearranged as each line 1is
entered so as to keep the lines in numerical order. Adding
or deleting a line from source code "destroys" the variable
table. (Pleces or all of it may be found by looking in
memory with the monitor or PEEK.) We illustrate storage
by some very simple programs:
1 A=3
RUN
$7300 gﬂ start of source program
ﬁ% address of next line
751} ;
line number
29
41 A
AB token for =
33 3 in ASCII
gﬁ line end symbol
ﬂg} when address of next line is zero, source ends.
g%] variable table starts. First 2 bytes are name A, -
82 1 Next 4 bytes are value 3 in floating point.
7
0
empty «..
1 A$:HB"
RUN
$7304 %ﬂ Start of source program
C
23
71
20
L1 A
24 $ token
AB = token
22 " token
$7309 42 B in ASCII
22 ¥ foken
Jo) line end
gﬂ} program end (2 bytes)
4
41 A
80 $ -~
@1 length of string
@9} address of first byte of string (2 bytes)
23

SOURCE CODE AND VARIABLE TABLES

e

10 DEF FNAB(A)=A%*2

RUN

s9308 99 $p31l 01} aps
gﬁ% {¢3} address of definition of FNAB
gg DEF {¢3} address of value of argument
2@ space
OE FN
b1 A ﬂg L byte value of A
L2 ? gg
28
i A o
29) ety . s
AB =

g3dE 41 A
A #
%32 2
&

g312 %g}

In the above example, if we add the line
20 Z=2:? FNAB(Z+3)

after RUNning the address value of the argument would
still be that of the value of A, even though the execution

of FNAB calculated the argument as the value of Z+3=5,and
A is unchanged.

When strings are concatenated, they are stored at the end
of memory. For a 16K machine the last byte is $3FFF.

When the following program is run, its variable table
looks like this:

1 Ag="g" $431B 41

2 A$=A$+AS 8¢g

RUN g2 string is 2 bytes long
FE its first byte is at $3F FE.
3F
empty ...

$3FFE 42
L2

35

L6

ARRAY STORAGE

We illustrate the storage of array variables by showing
the variable table for this program:

10 DIM A(1,2)

20 FOR I=g TO 1

30 FOR J=g TO 2

4O A(I,J)=10%I+J
50 NEXT

RUN

The Variable table starts at $7348:
$F348 49 T $#35D
29

5 50,0
] :

o ?Z%O)
g 20 A(1,0

J
g7 210,1)
il
W é’?}
29 J
$21=33=6x4+9=
g8 size of 84 =11
table 3¢.A(1,1)
g2 2 indices fo]
225 1 82 =2
ﬂg A vziugs gﬁ (0,2)
@

7
> I hag 2

A

84 =12

Lg A(1,2)
7

empty ...

Unlike a speedometer, the fastest changing digit is the
one on the left. Note also that table size has its most
significant digit last but the index size has it first!

Y
THE STACK

FEach time the interpreter encounters a FOR... statement, it pushes
some stuff on the stack. The depth of all kinds of nesting combined,
(7.4 seta, FOR...NEXT loops, or subreutines, is limited by the
stack length available. Consider this short program:

1# FORA=1TO02STEP3

2@ END
program stack
0300 {00 O1FF
82} address of next line overhead
OA 13 b 01FO0
00f +1N® HUMBEr =N O1EF 81 FOR, token
ii EOR ——————-(ég address of loop
first {AB = g < VEE FALR
line 91 1 Cco
oD TO (oo ~STEP
32 2 : 00 '
A2 STEP ﬂjj 01
\33 3 82
’
Sg 88 exit value
03 next address 00
secondé
line %g line number \\—————-{8% line number of FOR
\88 S {88 address of following
00 line
OO} program end
variable
L1 A
table
00 p
80 T
00 1
00
00

The entry on the stack for subroutines is demonstrated by this
little program:

5 GOSUBY?
6 REM
7 END
program stack
0300 00
08 ;i
05 8C GOSUB tok
05 oken
00J - SN 88 1line number
8C GOSUB
0306 37 =7 8% address of target
00 TR line name

A5

L8

We see that FOR pushes 16 bytes on the stack and GOSUB i
7 bytes. Within a line "(" pushes 5 bytes and expressions within
the parentheses may push additional bytes on the stack.

Now we consider the two commands (FOR, GOSUB) that push stuff
the stack, and the three (NEXT, RETURN, FOR) that search the stack.
GOSUB: Pushes 7 bytes on the stack, does no search of the stack.
(a) 18 GOSUB 3¢
2@ N=N+1:PRINT N
3@ GOTO 14
You get OM ERROR after N=26 because of stack overflow.
RETURN: Searches the stack for the last GOSUB pushed on. Clears

the stack of all entries made after that GOSUB. Thus any
loops started in the subroutine but not finished the (
exited by a NEXT) are removed from the stack. This !
unfinished business in the subroutine from slopping over into
the calling program.

(b) 18 GOSUB 50
20 NEXT I
3¢ END
5@ FOR I=1 TO 3
6@ RETURN

NF ERROR IN 2. No record exists at line 20 that the FOR I=...
loop was previously entered.

NEXT: Searches the stack for the last FOR stuff pushed on.
Stops searching when it encounters GOSUB stuff.
(c) 14 FOR I=1 TO 3
2@ GOSUB 50
5@ NEXT
NF ERROR IN 5@.. The NEXT search terminated at the GOSUB stuff and
thus didn't detect the FOR stuff beyond it.

NEXT I: Searches until it finds a FOR I=... entry on the stack.

On the way it removes any FOR entries with other variable names.

The search terminates if a GOSUB entry is found.

(d) 1@ FOR I=1 TO 3
28 FOR A=1 TO 3
30 NEXT T
L@ NEXT A

NF ERROR IN 4@. The information about the FOR A=... has been
wiped from the stack by the time line 40 is reached.

on

FOR: Searches the stack for all previous FOR entries that have the

same loop variable name. It picks the oldest entry and purges

the stack back to that point. If a GOSUB is detected during the

search, the search is terminated.

=

L9

(e) 14 FOR I=1 TO 3 (f) 1 FOR I=1 T0O 3
20 FOR A=1 TO 3 28 GO TO 14
3@ FOR I=1 TO 3 1 £
L"g NEXT I 00ps erever
5@ NEXT A
60 NEXT I

NF ERROR IN 5@. Line 3@ purged the stack back to the FOR stuff
put on in line 1@. This purging of extra entries with the same
variable name permits jumping out of a loop and then re-entering
it without a stack overflow. See program (f)

Again, the search terminates at a GOSUB to isolate the main
program from the shenanigans in the subroutine. But this isolation
cannot be complete because the stack is not the only thing altered
by the FOR statement. The loop variable entry in the variable table

is also initialized. The new value persists even after return from
the subroutine.

(g) 14 FOR I=1 TO 3

2@ GOSUB 54

3¢ PRINT I:NEXT I

L@ END

58 FOR I=7 TO 9

6% RETURN
Runs to a normal END at line 40. But it only "loops" once, printing
the number "7". The moral? Either use different loop variable

names in the subroutine, or make a normal exit through NEXT in the
subroutine's loop.

Some other instructive programs:
(h) 1@ FOR I=1 TO 3

28 FOR A=1 TO 3 (i) 18 FOR I=1 TO 3
3¢ N=N+1:PRINT N;I;A 28 N=N+1:PRINT N;I
L@ GOTO 18 38 GOSUB 14

loops forever OM ERROR after N=8

50

051 NEWSLETERS

PEEK(65)
P.0.Box 347
Owings Mills MD 21117

0SI0 Newsletter
David Morganstein
13329 Woodruff P1l.
Germantown MD 20767

The Aardvark Journal
1690 Bolton
Walled Lake MI 48088

0.5.1. Users Independent Newsletter
Charles Curley

6061 Lime Ave. ;2

Long Beach CA 90805

OSI's Small Systems Journal
Defunct. Complete set from
PEEK(65) for $10.00. Contained
many programs that (modified)
are still useful.

$12.00 for 12 igsues

Membership $15.00/year
Program exchange, discounts
on OSI and other equipment.

$9.00 for 6 issues

$10.00 for 6 issues

Later, 0OST published z sect

by that name in kilobaud
MICROCOMPUTING. Presently

6502 PUBLICATIONS

MICRO
34 Chelmsford Street
Chelmsford, MA 01820

COMPUTE!

Circulation Dept.
P.0.Box 5406 |
Greensboro, NC 27403

1 REM NUMBER GENERATOR *#%
Z REM

1@ REM %#% DRIVER
181 REM

185 GOSUB 9858:REM
118 FOR I=1 TO 1a@8
128 GOSUB S586A:REM USE

1308 PRINT R7:REM R7Y IS THE RANDOM NUMBER

148 NEXT

#%% RANDOM

%

INITIALIZE

158 REM THE PERIOD OF THIS GENERATOR 1S ABOUT

999 S5TOP
3886 REM
9881 REM
9818 F7=F7#15-233%INT(F7£15/233}
815 G7=G7*15-251*%INT(GY*15-251]
YEZP RY=(F7#251+6G7 3~ (233#%251 }: RETURN
9E5E REM ENTER HERE TO IMITIALIZE
4B55 Fe=113:G67=71:RETURN

#*% RANDOM MUMBER GENERGTCOR #%%

$2.00/issue

"Best of MICRO"™ also available

$2.00/issue, $16.00/year

148849

51

0SI SOFTWARE HOUSES

Aardvark Technical Services
1690 Bolton
Walled Lake, MI 48808

Aurora Software Associates

P00 Box 99553
Cleveland OH 44199

Progressive Computing
3336 Avondale Court
Windsor, Ont. CANADA NOE 1X6
or
3281 Countryside Circle
Pontiac TWP, MI 48057

Mittendorf Engineering
905 Villa Nueva Dr.
Litchfield Park, AZ 85340

DBIS
One Mayfair Road
Eastchester NY 10707

DBMS, Inc.
P.0O. Box 347
Owings Mills MD 21117

Bill's Micro Services
210 S. Kenilworth
0Oak Park IL 60302

Software Federation Inc.
Lly University Drive
Arlington Heights IL 60004

Orion Software Associates
147 Main Street
Ossining NY 10562

Prism Software
Box 928
College Park MD 20740

Retelle
2005 Whittaker Rd.
Ypsilanti MI 48197

Mile High Software Co.
318 Linden Ave.
Boulder CO 80302

Earthship
Box 489
Sussex NJ

Games, utilities, data sheets,
firmware, hardware mods.

Games, utilities, business

Games, utilities, data sheets,
firmware, hardware mods.

Software, data sheets, hardware
Business

Manuals, business software

OSTI 1P programs

Business

Games

Disk.copy utility

Games

Games

Games

52

BAP$ Software
6221 Richmond Ave., Suite 220
HousSor MX: f2205Y

Perceptions Unlimited
Box 3-186 ECB
Anchorage AK 99501

Dwo Quong Fok Lok Sow
and
Structured Program Designers
3712 Broome .o
NYC NY 10013

Digital Technology, Inc.
P.0.Box 178590
San Diego CA 92117

The 6502 Program Exchange
2920 W. Moana
Reno NV 89509

Technical Products Co.
P.0.Box 12983
Gainsville FL 32604

Systek, Inc.
P.0. Drawer JJ
Miss. State, MS 39762

Honders Inc.
57 North Street
Middletown NY 10940

Aristo/Polks
314 5th Ave.
NYC NY 10001

Software Consultants
7053 Rode Trail
Memphis Tenn. 38134

D $ N Micro Products, Inc.
3932 Oakhurst Dr.
Fort Wayne IN 46815

Personal financial

Games

Word processor

Business

Business

General 6502 programs, can

deliver in KC tape format

Disk FPORTH, ete.

Engineering programs

Business

Games

0S-65D V3.2 Manual

0OSI compatible hardware, boards

.

MEMORY MAP

C2-4P with 16 K of memory and a BASIC-IN-ROM Version 1.0, Rev. 3.2.
Most of these entries are due to Bruce Hoyt and to Jim Butterfield.

00
03

06
08
OA
0D

on
oF
10
(3
13
5B
5C
5D

5

B

L,

60
61
62
63
64
65
68
6B
6E
71
73
75
77

LC
LC

05
C1
4C
00

00
L8
38
00

7h A2

C3
AE

AF
88

e

to 5A

22

A8

AE

JMP. to warm start. $BD11 earlier, cold start

JMP to message printer. A,Y contain lo,hi address
of start of message. Message ends with a null.

INVAR, USR get argument routine address

QUTVAR, address of USR return value routine

JMP to USR(X) routine

number of nulls after Line Feed, set by NULL command.
Note! not the nulls after CR.

line buffer pointer

terminal width. $48=72

input eol. 1limit

integer address

line buffer

used by dec. to bin. routine, search character, etc.

scan-between-quotes flag

line buffer pointer, number of subscripts

default DIM flag

type: $FF=string, $00=numeric

DATA scan flag, LIST quote flag, memory flag

subscript flag, FNx flag

$00=input, $98=read

comparison evaluation flag

CNTL-0 flag. $80 means suppress output

temporary string (descriptor stack) pointers

stack of descriptors for temporary strings

temporary variable pointer, also used by dec. to bin.
pointers, etc

product staging area for multiplication

54

79
7B

7F
81
83
85
87
89
8B
8D
8F
91

AC
AC
AE
AF
BO
B1
B2
B3
B3
B8
B9

00
to BY

80 00 00 10 00

92
A1l

address of start of source program in RAM
single variable table
array varilable table
empty BASIC memory
high string storage space
temporary string pointer
address + 1 of end of BASIC memory
current line number
line number at STOP, END or (CTRL/C) break
program scan pointer, address of current line
line number of present DATA statement
next address in DATA statements
address of next value after comma in present DA
Statement
last variable name
last variable value address
address of current variable, pointer for FOR/NEXT

work area; pointers, constant save, etc.

JMP, a general purpose jump

misc. work area and storage

polinter to current program line

first floating point accumulator. E,¥,M,M,S
AD and AE are printed in decimal by $B962
FACHI, byte transfered by USR(X)

FACLO, .

sign of Acc. #

series evaluation constant pointer
accumulator #1 high order (overflow) word
second floating point accumulator. £,M,M,M,S
E=exponent, M=mantissa byte

sigh comparison, acc. #1 vs. #2

acc. #1 low order (rounding) word

BA 98 A1
BC to D3
BC E6 C3
BE DO 02
CcO E6 Ch4
C2 AD 00
G5 C9 3A
C7 BO OA
C9 C9 20
CB FO EF
CD 38

CE E9 30
DO 38

D4 E9 DO
E3 60

Bl e D7
D4 80 4F
D6 C7 52
D8 to FF
FB

FC

FD

FE s
100 to 10C
130

1C0

133 to 1FF

03

55

series pointer

routine copied from $BCEE. It is the start
of a subroutine to go through a line
character by character.

INC lo byte of address of character

BNE

INC hi byte if needed

IDA with a character of the line.

CMP #$3A 1is it a colon?

BCS branch is yes, statement done

CMP #$20 is it a space?

BEQ branch if yes, get another character

SEC set carry

SBC #$30

SEC

SBC #$0DO

RTS end of subroutine, character in A

used by ISI extended monitor as well as BASIC

random seed

unused by BASIC

monitor load flag
& data byte
L current address

ASCII numerals built in this space

NMI interrupt location

IRQ . u , can be overwritten byBASIC

BASIC stack

56

200
200
201
202
203
204
205
206
207
207
20A
20D
20E
20F
212
213
217
218
218
21A
21C
21E
220

to 20E

to 20E
B9 00 D7
99 00 D7
€8
60

to 211
00

used to output to the screen and tape

cursor location, initialized to contents of $FFEO

save character to be printed
temporary

L,0AD flag, $80 means LOAD from tape
temporary

SAVE flag, O means not SAVE mode
repeat rate for CRT routine

part of scroll routine

LDA $D700,Y

STA $D700,Y

INY

RTS

unused

CNTL/C flag, not O means ignore CTRL/C

OD 96 OD OD used by keyboard routine

to 221

o
used in 600 board machines as follows:
input vector

output vector

CNTL/C vector

LOAD vector

SAVE vector

See also Jim Butterfields list in COMPUTE., issue 2,
January/February 1980, page 41.

BASIC MEMORY ROM

Thanks are due to many people who wrote me with entries, and
especially to Bruce Hoyt and to Jim Butterfield. See also Jim's
article in compute II., issue 2, June/July 1980 and the article
in PEEK(65), Vol. 1, No. 12, December 1980.

AO0OO0 - AO37 1Initial Work Jump Table
A038 - AO65 routine entry addresses
AO84 - A186 ERROR message table

A1A1 search stack for most recent GOSUB or FOR

A1CF routine to open space in program for another line

A212 check stack size

AZ1F check free memory left

A24E message output

A274L warm start

A295 tokenize and store in BASIC

A2A2 delete a line from program

A32E rebuild chaining of BASIC lines

4357 input a line to input buffer

A386 input a character, calls routine at FFEB

A399 toggles the CTRL/O flag

A3A6 convert keywords in input line

Al32 find program line number less than number in
$11-12, put address in $AA-AB

AL61 NEW routine

Al7A CLEAR

AL77 initialize

ALO1 clear stack, reset addresses

ALAT7 initialize program scan pointer to beginning
of program.

ALB5 LIST

As556 FOR

ASFF execution routine

A61A RESTORE

A629 CNTL/C

A638 STOP

A63A END

A661 CONT

A67B NULL

A691 RUN

Ut

o

A69C
A6B9
ABE6
A70C
A71A
A71F
A73C
A7LF
A75F
A77F
A7BO
A829
AB66
ABC3

ABEO
ABES
A9Ok
A923
A9L6
AQLF
AA1C
AALO
AA9B
AAC1
ABAC
ABD8
ABF5
ACOO
ACO3
ACOC
AC66
AC69
AC96
ADO1
ADOB
AD81
AD8B
ADE6

GOSUB

GOTO

RETURN

DATA

scan for next BASIC statement

scan for next BASIC line

IF

REM

ON

decimal to binary, put answer in $11,1
LET

PRINT

end of input line routine, puts out CR and LF & nulls

string output routine, address in A,Y (lo, hi)
end string with a null

output single character

output routine, calls $FFEE
handle bad input data

INPUT

prompt and receive input

READ

Message table "EXTRA IGNORED, REDO FROM START"
NEXT

check data, print "TYPE MISMATCH"
expression handler

non-numeric expressions

NOT

ghegk Tor ("

shealk for *)°

cheeck for ","

print "SN"
OR

AND
comparison
DIM

search for variable location in memory
is character alphabetic?
create new variables

array pointer subroutine

ADF7 evaluate integer expression

AEQ5 = command

AE17 create new arrays

AF7C compute array subscript size

AFAD FRE

AFC1 fixed to floating

AFCE POS

AFD4 check if "ILLEGAL DIRECT"

AFDE DEF

BOOB check FNx syntex

B021 evaluate FNx

BO8C STR$

BOAE scan and set up string

B115 build string vector

B147 garbage collector

B1D4 find string for collection

B218 collect string

B24D string concatenation

B28A put string in memory

B2B3 discard unwanted string

B2EB clear descriptor stack

B2FC CHR$

B310 LEFT$

B33C RIGHT$

B347 MID$

B36F pull string function paramerers from stack

B38C LEN

B392 go from string mode to numerical mode

B39B ASC

B3AB input byte parameter

B3BD VAL

B3FC get 2 parameters for POKE and WAIT

B4O8 floating number in accumulator converted to
fixed and put in $11,12

BL1E PEEK

B429 POKE

B432 WAIT

BLLE add 0.5 to acc. #1

B455 - command

60

BL46C
B537
B564
B569
B59C
B5BD
B5FE
B622
B64D
B673
B690
B69E
B6B5
B6C2
B6CD
B74B
B76B
B79B
B7F8
B7AB
B7BA
B7CA
B7F5
B831
B862
B887
B912
BOL7
B953
B95E
B962
BY6E

BA96
BAAC
BAB6
BAEF
BAFA
BB1B

+ command

complement acc. #1

print "OV"

multiply a byte

function constant table

LOG

* command

multiply a bit

load acc. #2 from memory

test and adjust acc. #1 and #2
over and underflow

multiply by 10

10 in floating point binary
divide by

divide into, /

unpack memory into acc. #1
store acc. #1 in memory

acc. #2 to #1

compare acc. #1 to memory
transfer acc. #1 yo #2

round off acc. #1

sign of acc. #1

ABS

floating to fixed

INT

string to floating point

get next ASCIT digit

table of constants to build string of a number
output line number

hex in A,X ‘converted to deximal and printed
output decimal value of number (binary) in $AC,AF

build ASCII number in $100-10C from number in
$AC-AF

table of constants for numeric conversions
SQR

ATaise to a power

negation

table of constants for string evaluations
EXP

i

BB6E
BBB8
BBCO
BBFC
BCO3
BCA4C
BC78
BC99
BCEE
BD11

BE39
BF2D

omissions.

series evaluation

table of constants for RND

RND

CcosS

SIN

TAN

table of constants for trig. functions
ATN

get character routine, moved to $BC
cold start

cold start messages

output character to TV screen, do scroll, etc.

This 1list may contain some errors, or at least some
The listed addresses are (sometimes approximately)

where the code for that function begins. In many cases it

is not the entry point. Often the code is not in the form of

a complete subroutine, rather it is entered and left by

jumps and branches, and thus cannot be used as a self standing
unit outside of BASIC. This list of addresses should be
very helpful if you wish to play around in the innards of

BASIC, but you will also need a disassembly of the machine

language code in the region of interest, and lots of patience.

61

62

Feaa-
FEBZ-
FEB3-
FE@4-
FEG7?-
FE@S-
FEGC-
FEBE -
FE18-
FE12-
FE14-
FE16-
FE18-
FE19-
FE1B-
FE1D-
FELE-
FE26-
FE22-
FE24-
FEZ26-
FEZ28-
FEZ2A-
FEZ2D-
FE2F-
FE31-
FE33-
FE3S5-
FE37-
FE39-
FE3C-
FE3E-
FE486-
FE43-
FE4S-
FEA7-
FE4AR-
FE4C-
FE4F -
FES2-
FES4-
FESBE-
FES8-
FESA-
FESC-
FESE-
FEGB-
FEB2-
FEG4-
FEBE-
FEGS-
FEGC-
FEGE-
FE7B-
FE73~
FE7S-
FE77-
FE7R-

Az
3R
Ge
RD
AS
8D
A2z
A9
85
A9
85
85
A8
A9
81
c8
D8
E6
E4
D@
84
Fa
28
c9
F@
Cs
Fa
Cc3
Fe
28
38
A2
28
B1

5BES A

CSs
Fa
C8

E6

E6

Bi

4C
2€
38
A2z
28
AS
91
28
%]

28
FE

FB
FF
FF
FS
FF
19
ES
2F
1E
47
17
4C
43
93
EC
8z

FE
FC

mm A

ES
2E
D4
8D

FE
az
FF

FE
FC
7
93
El

DA
FC
FE
AC
D3

FE

FE

FE

FE

88
FE

FE
FE

FE

FE

LD
TARE
CLE
LDA
LDA
STA
LDX
LDAR
sSTA
LDA
sTA
sTA
TAY
LEA
STA
INY
BNE
INC
CPX
BNE
STY
BEQ
JSR
cHMP
BEQ
CMP
BEQ
cMP
BEQ
JSR
BMI
LOX
JSR
LDA

* 8TA

JSR
BNE
JMP
JSR
cMP
BEQ
cMP
BNE
INC
BNE
INC
LDY
LDA
STA
JMP
JSR
BMI
LDX
JSR
LDA
STA
JSR
BNE

#¥:=8

$repe
*8IF
FFRAS
#8408
3 305
2FF
.2 1514
$FE
$FB

#8206
(SFE), Y

$FELB
SFF
SFF
SFE1B
SFF
SFE43
SFEES
$82F
SFEA4F
847
SFE4C
£84C
$FE7C
$FE93
$FEZA
2862
SFEDA
(SFE),Y
sFC
SFEARC
SFEZ2A

($BGBFE)
SFEES
$#$2E
SFEZ2A
$86D
SFEGY
SFE
SFEGBD
SFF
4800
(SFE).Y
S$FC
SFE77
SFES3
SFEAF
48008
SFEDA
$FC
(S$FE), Y
S$FEAC
SFE4F

MONITOR: initialigze

initialize stack to $z8
clear decimzal mode
initislize UART on 430 board -
continue
continue
CLinR TY SCRERN: % ha byte of e&nd atdress
A holds hi byte of screen start address
hi byte: current address of screen
lo byte
store
store

set FETCH flag to $00: means input from kybd
load space char. into A
store space on screen

next
repeat
increment hi byte of current screen address
done it 8 times?
if not, branch and repeat
if so, set hi byte of screen address to $00
branch always to IN: display for $0000

ADDRESS mode (.): fetch char from tape or kybd

is It (/)%

if yes, branch to DATA mode (/)

ig it {G)¢?

if yes, branch and GO: execute program
8 I8'(0:

if yes, branch and set FETCH flag, read @n:
JSR to LEGAL:change char. from hex to bing¥y
branch if char. is illegal hex digit

roll address in memory

IN: JSR to ROLAD

load A from current address

store in $FC

update screen display

branch always: get next char.

GO: execute program at current address

DATA mode (/): look for keyboard character

ig it (.)7
if yes, go to ADDRESS mode (.)
is it (RETURN) key?
if no, roll in and display hex digit
else increment address lo byte
need increment hi byte?
if yes, do so
set Y for rolling data
load data from current address in $FE,FF
store data from memory in $FC
JMP to INNER: display on screen, then to(/)
JSR to LEGAL: convert char. to binary
branch if char. was not legal hex
prepare to roll DATA nybble into memory
roll one nybble into $FC ($FD also changes,
load current data byte from $FC
store in next spot in memory
INNER: JSR to DISPLAY
branch always to DATA mode (/)

EE7¢~
FEVE-
FEB@-
EQT -
FEB4-
FEEB-
FEESQ -
FE&A-
FEBE-
FESC-
FEBE-
FESF -
FESA-
FES Y-
FES2-
FE93-
FESS-
FEST-
FEYSS~
FESB-
FESD-
FESF -
FEAl=
FER3~
FEA4-
FEAG-
FERB-
FEAS-
FEAB-
FEAC-
FERE -
FEBB-
FEBZ-
FEB3-
FEB4-
FEBS-
FEBG-
FEBS-
FEBB-
FEBE -
FEBF -
FEC1-
FEC3-
FECE-
FECS-
FECA-
FECC-
FECE-
FED@A-
FEDZ2-
FED3-
FEDS-
FEDB-
FED9-
FEDA-
FEDC-
FEDD-
FEDE-

a5
F@
AD
4R
Se
Al
A
£A
£ER
29
(=15
26
1515
(5]5]
a8
cs
30
Cc3S
30
ca
38
Ccs
16
38
ES
29

68-

A9
6a
A2
AB
BS
1A
4A
4A
1A
20
BS
28
CA
18
A9
8D
8D
(517%]
29
a9
CcSs
38
18
63
93
c8
66
AB
BA
BA
8A

FB
CF
"}

Fe

“ul

4

38
17
2A
8B
4]

BA
47
(5]5)

a7
aF

88

83
%1%]
FC

cA
FC
A

EF
28
CA
CB

BF
36
3A
a3

a7
ce

B4

e

FE

FE

Da
De

D@

#F B
EFEA4F
&FCea

SFEGHA
fFCcael

#87F

#8306
$FEAS
#$3A
SFERB
841
SFERS
*#8$47
SFEAS

#8087
$80F

#8806

#8803
#8006
S$FC, X

SFECA
$FC, X
SFECA

$FEBO
820

spacA
SDBCB

#8S0F
#8306
#$3A
SFEDS

#8307

63
store L in $FB, FaTCH flag
branch to keyboard input if flag $00
OTHER: read tape from ACIA 6850
chift bit of status register to C
if bit $00, ACIA is not ready
fetch char. from tape

strip off parity bit, leaving ASCII char.
return

LEGAL: hex to binary conversion, bit 7 set if
branch if too small for hex error
compare to $3A
branch if less than $3A: was hex 0 to 9

_—compare to letter "A"

branch if between ASCII : and @
compare to letter "G"
branch if too large
set carry bit, char. is A to F
subtract to form binary number
mask off high nybble
return
load A with neg. number for error flag
return
DISPLAY: displays 4 bytes (erases 1 byte)
set starting point on screen: $D0OC6
byte to be displayed: $FF,FE,FD,FC in order
shift ‘
shift
shift
shift
JSR DISNYB: display hi nybble
reload byte
JSR DISNYB: display lo nybble
repeat above for next byte
do 4 bytes altogether
$20 is space
blank out display of byte from $FD
continue
return

DISNYB: display 1 nybble on the screen
AND the hi nybble to zero, add $30 to byte
compare to $3A
branch if hex is 0 to 9
clear carry bit: number was 10 to 15
add 7 to get ASCII letter A to F

$DBCE, Y store on screen

884

increment to next screen location
return
ROLAD: roll hex digits into 2 bytes of memory
shift 4 times to put 1o nybble in A to
hi nybble in A

FEDF - an

FEE@- ZA roll A: bit 7 to C

TEEL= 3B FC $FC, % roll next memory

FEE3- 36 FD ={u! $FD, » roll "nex®

FEES g8 DEY Nnex’®

FEEG- DB F8 EME $FEE®@ do Tfor 4 Dbits

FEES- &8 RTS return

FEES- RS FE LDA $FB FETCH: first check FETCH flag

FEEB- Da g1 BN $FETE if not zero, read from tape

FEED- 4C @8 7L IMP SFLDGw wes zero, jump to keybozrd (RT5 from there)
FEF@- AS FF LOA #8FF LOOK: looks for =ny keystroke

FEF2- 8l @@ TF STR $DFEE strobes all rows of keybosrd at once
FEF5- AD @8 DF LDA $DFBE records which col.s hzd keys down

FEF8- &6 RTS return

FEF9- EA NOF

FEFR- 3B @l Here zre 3 addresses left over from when
FEFC- @@ this code was in page $FF and these were
FEFD- FE CA 81 interrupt addresses

Changes from the above for a C1 machine: page 3

-=0C A2 D4 screen size is smaller
ERERT DO 93
T3 BA FF jump tatle read into page $02 from
69 FF suppor® ROM program
OB FF
8B FF
96 FF

(Changes on page $FF for C1 and Superboard II machines,

continued from last pzge.)

TFEO $65
E1l $17
B $00
z6 $OF
BA $9OF
FFEB $6C 18 0Oz
$6C 1A 0Oz
$6C 1C 0z
$6C 1E 0Oz

$6C 20 02

65

FFee- o8 CLD SUPPORT ROM: clear decimal mode

FF@L- AZ 2% LD¥% %328 initialize stack to $28

FF@3- A TRS continue

FFQ4- 2@ 22 Br JSR $EF27 initialize 6850 ACIA

FFEP- NG 0@ LDY 480D initialize some page $02 flags, etc.
FFRs- B8C 12 @2 STY $02:7 i

Froc- 9c 93 0z STY #8282 n

FFar- ec &% 6o §TY $BZGS o

FF12- 3c P az STy $B296 3

FF15- AD EG FF LOA SFFEB initialize cursor position

FF18- D A @2 STA $9200 3

FF1IB- A9 Z@ LDA #8208 $20 is "space"

FF1h- 39 86 D7 STH 8$07B8,Y clear screen

FFz@- 99 @8 D6 STA sD&8a,Y o

FF23- 399 @88 DS STA 80588, Y H

FF26- 39 @8 D4 STA s$D4@a.Y B

FF29- 899 @@ L3 STA $0208, Y Y

FF2C- 939 86 D2 sTA $D288,Y ¥

FF2F- 939 88 D1 sTA sDi@es,Y L

FF32- 39 pa D8 STA $DB0G, ¥ ;

FFA5- c8 INY .

FF36- DB ES BNE SFF1D "

FFas- B3 ©F FF LDBA SFFSF,Y write "C/W/M ?" on screen

FF3B- FO 86 BEQ $FF43 branch if reached null at message end
FF3D- 28 2D BF JSR S$BF2D JSR to CRT routine in BASIC

FF48- ce INY next letter of message

FF41- D@ F5 ENE $FF38 continue

FF43- z@ B8 FF JSR SFFB8 JSR INPUT: fetch char. from tape or keyboard
FF46- CS 4D CMP #84D is it (M)?

FF48- D@ 83 BNE SFF4D if no, branch

FF4A- 4C 88 FE JHP SFEBB if yes, JMP to MONITOR

FF4D- CS 57 CMP 2857 is it (W)?

FF4F- D@8 83 BNE SFFS4 if no, branch

FFS1- 4C @8 28 IMP $P888 if yes, JMP to BASIC warm start
FFS4- C9 43 CMP #843 is it {g)*®

FFS6- D8 fi8 BNE SFF@8 if no, branch and seek new key stroke
FF58- AS @8 LDA #8300 if yes, set registers to zero and
FFSA- AR TAX " ;

FFSB- A8 TAY g

FF5C- 4C 11 BD JMP $BD11 JMP to BASIC cold start

FE45F 43 2F 57 2F 4D 20 3F 00
7

c , W , M
FF67- 28 2D BF JSR $BFZD OUTPUT: char. to tape and TV screen
FFBA- 48 PHA save char.
FFEB- AD B85 @2 LDA $8285 test for SAVE flag
FFBE- F@ 22 BEQ S$FF92 if not save, branch, PLA and return
FF7B- &8 PLA pull char. from stack
FF71- 28 15 BF JSR S$PBF1S go write char. on tape
FF74- C3S 8D CMP 288D was char. a CR?
FF76- DB 1B BNE SFF393 if no, branch and return
FF78- 48 PHA if yes, push char on stack
FF79- 8A TXA save X on stack too
FF7A- 48 PHA "

FF7B- A2 BA LDX #88A $0A=10

66

FFeD-
FETF=
Frag-
FFE3-
FFEs5~
FFBE-
FFEr-
FFE8-
FFE9-
FFER-
FFEeD-
FFaF -
FF9z2-
FFaa-
FF94-
FFa5-
FFa7-
FFgs-
FFac-
FFaE-
FFAB-
FFA3-
FFAG-
FFAS-
FFAA-
FFAD-
FFBE@-
FFB2-
FFB4-
FFB7-
FFB8-
FFEB-
FFBD-
FFBF -
FFCZ-
FFC4-
FFC?-
FFCa-
FFCC-
FFCD-
FFCF -
FFD2-
FFD3-
FFDB-
FFD9-
FFDA-
FFDE-
FFDC-
FFDD-
FFDE-
FFDF -
FFE@-
FFEL-
FFE2-

Ad
2@
CH
De
&8
AR
B8
(=1%]
48
CE
A9
8D

58

ia

8D
A9
2C
g
AD
4A
= 1%}
AD
&8
EE
4C
@a
(5151
(51%
%1%}
(415
a1%]
{5%1%]
4@
3F
21

o)
(i)

s
&g

a3
aa
Bas

a1
FE
1z
XS
al
Be
Ba
aF
B4
1%15]
84
85
83
36

a3
19
a8z
Ba
ia
{515
BR
%15

EE
Bl

a3
ED

BF

DF
DF

oF

jiig

(3153

uz

oF

DF

FC

| 3

az
FE

#8002
$BF 15

SFFTF

$2283
%064
#8265

#8061

$FFoF
#0212
$FFBY
#$01

£$DFBB
£DFea
$FFBY
#4604

$0FE8
£DF 88
$FFBY
#8603

#6636

$0263
4FFD6
#€62

#DF B8
#2510

$DFoe
$FFD3
g$FCAB

$FFBD
$Fcal

#0283
$FEED

write 10 nulls on tape: load A with 10
go write a null on tape

repeat 10 Yimes
done? :

€s, recover A, X

"

Al

return
LOAD flag: set LOAD flag,
set LOAD flag: load ensbl
null in A 1o Teget SAVE T3
SAVE flag

recover A from QtaCk
return

SATE: sets SAVE flag

$01 for set SAVE mode
branch always

(CTRL/C) routine: checks for
if {CTRL/C). flgsein $0212
strobe row 1 of keyboard

"

check for CTRL key depressed
if not, branch and return

strobe row 4 of keyboard D

"

check if key (C) is depressed
if not, branch and return
if so, load A with 3 and jump to BASIC

return
INPUT: read tape and/or keyboard
branch if LOAD is disabled: JMP to keyboard

poll row 2 of keyboard

check col. 5 of keyboard
was 1t "space bar"

vy

1f yes, branch to disable LOAD and go to kybd

if no, check status of 6850 ACIA
branch if data is not yet ready
else load char. from ACIA to A
return

disable LOAD flag
JMP to keyboard, get char.

cursor home
line size
machine type: C1 1is gzero, C2 one

FFE3-
FFE4-
Fres-
FFLE-
FFE?-
FFES-
FFES-
FFEA-
FFEB-

FFEE-
FFF1-
FFF4-
FFF7-
FFFA-
FFFC-
FFFD-
FFFE-

BFA7-
BFBR-
BF@B-
BFOD-
BF 18-
BF12-
BF14-
BF15-
BFi6-
BF19-
BF 1A-
BF1E-
BF1D-
BF 1E-
BF 21~
BF22-
BF24-
BFZ27-
BF29-
BF2C-

(D
4A
98
AD
Fa
z9
68
48
AD
4A
4A
= %]
68
8D
(1%
AS
8D
A9
8D
68

Page $FF in C1 and Superboard II machines is like that in the

BE
=2
g3
83
94
ai

a1

(%] 5]

FA
a1
FS

TF

%]5]

Fa

B1

a3
8a
B1
aa

FE
FE
FF

FF
FF

FC

FC

FC

FC

FC

JHP
IMP
JMP
TMF
IMP
BT

LDnR
LSR
BCEC
LDA
BEQ
AND
ETS
PHA
LDA
LSR
LER
BCC
PLA
STA
RTS
LDA
STA
LDA
STA
RTS

$FFBE
$FFE7
$FFag
$FFE9
$FF94
$FFFD

$FCBA

$EFBY
$FCel
$EFB7
#$7F

$FCB8

$BF 16

$Fcel

#8883
$FCaag
#$B1
$FCoo

67

INPUT

OUTPUT

(CTRLAC)

LCAD flag set

SAVE flag set

NMI address, non-maskable interrupt
restart address

"

address for maskable interrupt

TAPZ PORT, INPUT: 6850 ACIA
move receive data flag to C
branch if data not ready
else load data into A
branch for more data if data was a null
else AND off the bit 7
return
TAPE PORT, OUTFUT: 6850 ACIA
after saving data in A, loadstatus register
shift twice to put Xmit data flag in C

branch if ACIA not ready

else pull data into A

send to ACIA

return

ACTA initialization

perform master RESET of ACIA

load ACIA control register for
8 bits, no parity, 2 stop bits
enable receive interrupt logic:return

C2-4P except where noted below.

FFOL4
FFOF
FFP12
FF35

FF55
FF69

FF8B
FF9B
FFBA

OD load jump tables from FEOF to page $02
initialize ACIA using routine at FCA6

34
5E
68
8A

99
B9
DA

initialize page $02 and clear screen

similar to FF38 onward of C2-4P

table "C,W,M,D ? null"

like OUTPUT of C2-4P at FF67 - 88 except write on
tape at FCB1, not BF15

LOAD and SAVE

(CTRL/C) routine like C2-4P at FF99 - B7?
INPUT, C1 keyboard is inverted from that of
ACIA is at F000

C2-4P.

68

BS
CN

DD

FC

D

LS
NF
OD

oM

ov

0S
RG

SN

ST

™

Us

/#

CODE
B B
o =4

D

e

L

N--

0.~

ERROR CODES
MEANING
Bad Subscript: Array index out of DIM range.
CoNtinue error: Incorrect CONTinue from a BREAK.

Double Dimension: Array DIMensioned twice, or DIM after
using the array set the DIM to 10 by default.

Function Call error: Either a BASIC function such as
SIN, or an internal function such as AND, has been

given an inappropriate variable.

Illegal Direct: INPUT or DEF FN commands cannot be used
in the immediate (direct) mode.

Long String: String longer than 255 characters.
NEXT without FOR.

Out of Data: Have done a READ past the end of the last
DATA statement.

Out of Memory: Either the program and variable table
used up memory, or the stack has overflowed from
GOSUB's etc. This error may occur on the first
command after a warm start. Just repeat the command.

Overflow: Floating point number too large.

Out of String memory.
RETURN without GOSUB.

SyNtax error: Incorrect spelling of commands, etc.
(Have you a command hidden in a variable name, such
as "T0" in "PAGETOP"7)

String Temporaries: String expression too complex.

Type Mismatch: String variable where a numerical
variable was expected, etc.

Undefined Function.

Undefined Statement: GOTO or &0SUB to a non-existent

